hihoCoder #1639 图书馆
题目大意
给定 $n$($1\le n\le 1000$)个正整数 $a_1, a_2, \dots, a_n$($a_i \le 10^{12}$),令 $s$ 为这 $n$ 个数之和。求
$$
\frac{s! } {\prod\limits_{1\le i\le n} a_i !} \bmod 10
$$
解法
中国剩余定理。
设上式中左边的商为 $x$,先分别求出 $x \bmod 2$ 和 $x\bmod 5$, 再利用中国剩余定理就可求得答案。
这个问题归结为:
对于素数 $p$ 和正整数 $n$,将 $n!$ 写成 $n! = ap^{k}$,且 $p$ 不是 $a$ 的因子。求 $a$ 和 $k$ 。
不难发现:
设 $n$ 的 $p$-进制展开式为
$$ n = b_0 + b_1 p + b_2 p^2 + \dots + b_r p^r \qquad ( 0 \le b_i \in \mathbb{Z} < p, b_r > 0) $$
则有
\begin{align}
k & = [n/p] + [n/p^2] + [n/p^3] + \dots + [n/p^r] \\
a & \equiv (p-1)!^{k} b_0! b_1! \dots b_r! \pmod{p} \label{Eq:2}
\end{align}
其中 $[x]$ 表示不超过 $x$ 的最大整数。
(令 $B = b_0 + b_1 + ... + b_r$,不难证明,$k$ 还可以写成 $k = \frac{n - B}{p-1}$)
根据 Wilson 定理,\eqref{Eq:2} 可写成
\begin{equation}
a \equiv (-1)^{k} b_0! b_1! \dots b_r ! \pmod{p}
\end{equation}
算法的复杂度为 $O(p + \log_p n)$ 。
从这个问题中积累的新模型
一、$\frac{A}{B}\bmod p$($B$ 能整除 $A$ 且 $p$ 是素数)的解法。
二、$n! \bmod p$($p$ 是素数) 的解法。
下面考虑:模数不是 $10$ 而是 $20$ 的情况下,此题如何求解。
仍循旧思路,采用中国剩余定理,我们需要求出 $x \bmod 4$;按旧办法求当然是可以的。注意:由于要预处理出 $0$ 到 $p-1$ 的阶乘,所以(对于旧思路)能否用 Wilson 定理并不影响复杂度。
如果模数的某个素因子的次数 $k$ 很高,求 $x \bmod p^k$ 的复杂度 $O(p^k + \log_{p^k} n)$ 就不能容忍了。很自然地,我们会考虑 $x\bmod p$ 与 $x\bmod p^k$ 之间的关系。
(留坑)
hihoCoder #1639 图书馆的更多相关文章
- Hihocder 1639 : 图书馆 (组合数+唯一分解 求最后一位)(妙)
给定n,(n<=10^3),然后输入n的数a[i],(a[i]<=1e10),求ans=(a1+a2+a3...an)! / (a1!*a2!*a3!...an!) 的结果的最一位数. 适 ...
- hihoCoder 1383 : The Book List(书目表)
hihoCoder #1383 : The Book List(书目表) 时间限制:1000ms 单点时限:1000ms 内存限制:256MB Description - 题目描述 The histo ...
- hihocoder -1121-二分图的判定
hihocoder -1121-二分图的判定 1121 : 二分图一•二分图判定 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 大家好,我是小Hi和小Ho的小伙伴Net ...
- Hihocoder 太阁最新面经算法竞赛18
Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...
- hihoCoder太阁最新面经算法竞赛15
hihoCoder太阁最新面经算法竞赛15 Link: http://hihocoder.com/contest/hihointerview24 题目1 : Boarding Passes 时间限制: ...
- 【hihoCoder 1454】【hiho挑战赛25】【坑】Rikka with Tree II
http://hihocoder.com/problemset/problem/1454 调了好长时间,谜之WA... 等我以后学好dp再来看为什么吧,先弃坑(╯‵□′)╯︵┻━┻ #include& ...
- 【hihocoder#1413】Rikka with String 后缀自动机 + 差分
搞了一上午+接近一下午这个题,然后被屠了个稀烂,默默仰慕一晚上学会SAM的以及半天4道SAM的hxy大爷. 题目链接:http://hihocoder.com/problemset/problem/1 ...
- 【hihoCoder】1148:2月29日
问题:http://hihocoder.com/problemset/problem/1148 给定两个日期,计算这两个日期之间有多少个2月29日(包括起始日期). 思路: 1. 将问题转换成求两个日 ...
- 【hihoCoder】1288 : Font Size
题目:http://hihocoder.com/problemset/problem/1288 手机屏幕大小为 W(宽) * H(长),一篇文章有N段,每段有ai个字,要求使得该文章占用的页数不超过P ...
随机推荐
- 【NOIP2018】提高组题解
[NOIP2018]提高组题解 其实就是把写过的打个包而已 道路铺设 货币系统 赛道修建 旅行 咕咕咕 咕咕咕
- 解决循环里map不被重复覆盖的问题
参考:https://blog.csdn.net/zyf642112750/article/details/78295113 这样就不会一直重复 项目管理系统 了
- Maven学习(十一)-----使用Maven创建Web应用程序项目
使用Maven创建Web应用程序项目 用到的技术/工具: Maven 3.3.3 Eclipse 4.3 JDK 8 Spring 4.1.1.RELEASED Tomcat 7 Logback 1. ...
- 身份证扫描识别/身份证OCR识别的正确姿势,你get到了吗?
自从国家规定电信实名制之后,实名制已经推广到各个领域:办理通信业务需要实名制.银行开户需要实名制.移动支付需要实名制,就连注册个自媒体账户都需要实名制. 而实名制的背后,就是身份证信息的采集和录入验证 ...
- katalon系列十六:代码运行时实时创建元素对象或列表
Katalon的常规方法是先抓取元素并保存到仓库,在脚本中需要用到的时候调取,但假如元素属性和个数是可变的,就不能事先保存到仓库了,需要在脚本运行时实时创建. 代码运行时实时创建一个元素对象的例子im ...
- Mysql基础操作语句
SQL 简单的增删改查 不区分大小写, 表名和字段名可不加引号 查询语句 SELECT * FROM `table_name`; -- 注释 CTRL+/ : 注释 CTRL+/ : 取消注释 /* ...
- [寒假学习笔记](二)Python初学
Python 学习 python的自学从几个月前断断续续地进行,想好好利用这个寒假,好好地学一学. 回顾 已学习:基本操作.函数 已有C++的一定基础,只要注意python中比较特殊的部分就行 进入正 ...
- I understand that you would like to know about the Amazon Giveaway
Dear Seller, Greetings from Amazon Seller Support. From your mail, I understand that you would like ...
- python基础知识-7-内存、深浅、文件操作
python其他知识目录 1.一些对内存深入理解的案例 以下列举列表,列表/字典/集合这些可变类型都是一样的原理 变量是个地址,指向存储数据的内存空间的地址,它的实质就相当于c语言里的指针.变量和数据 ...
- 18软工实践-第八次作业(课堂实战)-项目UML设计(团队)
目录 团队信息 分工选择 课上分工 课下分工 ToDolist alpha版本要做的事情 燃尽图 UML 用例图 状态图 活动图 类图 部署图 实例图 对象图 时序图 包图 通信图 贡献分评定 课上贡 ...