Portal -->bzoj2318

Description

  Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。

  现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。

  答案保留6位小数

  数据范围$1<=t<=50,0.5<=q,p<=0.99999999,1<=n<=99999999 $

Solution

  额这题也是权限题放一下题面好了

  这个的话一开始自己想多了。。老觉得会不会说为了最优决策所以Alice为了有更大的概率得到想要的结果而故意想相反的结果之类的。。

​  emmm后来发现Alice和Bob根本不知道概率是多少所以根本不存在这个问题qwq

​  

  那所以我们可以考虑直接两个数组大力dp

  记\(f[i]\)为\(i\)个石子的情况下Alice(先手)的胜率,\(g[i]\)为\(i\)个石子的情况下Bob(后手)的胜率

  那么我们可以得到这样的两种转移:

1、如果说这一步拿走石子会更优,那么有:

\[\begin{aligned}
f[i]=p*g[i-1]+(1-p)*g[i]\\
g[i]=q*f[i-1]+(1-q)*f[i]\\
\end{aligned}
\]

  具体一点的话以\(f[i]\)的计算为例,前半部分是第一步Alice拿了,然后局面就变成了有\(i-1\)个石头并且是后手,所以乘的是\(g[i-1]\),然后后半部分就是第一步Alice没有拿,那就变成了有\(i\)个石头并且是后手,所以是乘上\(g[i]\),第二条式子同理就不赘述了

  然后我们大力化一下可以将这两条式子变成用\(f[i-1]\)和\(g[i-1]\)推出\(f[i]\)和\(g[i]\)的式子

  (用\(g[i]\)的表达式把第一条式子里面的\(g[i]\)换掉就好了,第二条式子的处理类似):

\[\begin{aligned}
f[i]&=\frac{p*g[i-1]+(1-p)*q*f[i-1])}{1-(1-p)(1-q)}\\
\\
g[i]&=\frac{q*f[i-1]+(1-q)*p*g[i-1])}{1-(1-p)(1-q)}\\
\end{aligned}
\]

2、如果说这一步不拿走石子会更优,那么有:

\[\begin{aligned}
f[i]=p*g[i]+(1-p)*g[i-1]\\
g[i]=q*f[i]+(1-q)*f[i-1]\\
\end{aligned}
\]

  具体含义什么的跟上面的差不多

  仔细看一下emmmm那好像直接就是\(p\)变成了\(1-p\)然后\(q\)变成了\(1-q\)而已。。所以转移的时候判断一下就好了

  

  那现在就是怎么判断是拿更优还是不拿更优,仔细思考一下这个拿和不拿其实影响到的是接下来局面的先手后手问题,所以我们就比较一下\(i-1\)个石子的情况下是先手的胜率更大还是后手的胜率更大就好了,也就是直接比较一下\(f[i-1]\)和\(g[i-1]\)即可

  然后还有一个东西就是。。推大概到\(1000\)之后(额或者更小一点也行qwq貌似只推到\(50\)也。。问题不大?没有交过qwq)在精度范围内就不会有变化了,所以大力“近似”一下每次只用推到\(1000\),这样就不会有超时的问题啦(算是一个套路吗。。?)

  

  代码大概长这个样子:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1001;
double f[N],g[N];
double p,q,P,Q;
int n,m,t; int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&t);
for (int o=1;o<=t;++o){
scanf("%d%lf%lf",&n,&P,&Q);
n=min(n,1000);
f[0]=0; g[0]=1;
for (int i=1;i<=n;++i){
if (f[i-1]>g[i-1]) p=1.0-P,q=1.0-Q;
else p=P,q=Q;
f[i]=(p*g[i-1]+(1-p)*q*f[i-1])/(1-(1-p)*(1-q));
g[i]=(q*f[i-1]+(1-q)*p*g[i-1])/(1-(1-p)*(1-q));
}
printf("%.6lf\n",f[n]);
}
}

【bzoj2318】game with probability的更多相关文章

  1. 【BZOJ2318】Spoj4060 game with probability Problem 概率

    [BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...

  2. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  3. 【bzoj2318】Spoj4060 game with probability Problem

    题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...

  4. 【BZOJ2318】【spoj4060】game with probability Problem 概率DP

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  5. 【bzoj2318】Spoj4060 game with probability Problem 概率dp

    题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...

  6. 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...

  7. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

  8. 【概率论】1-1:概率定义(Definition of Probability)

    title: [概率论]1-1:概率定义(Definition of Probability) categories: Mathematic Probability keywords: Sample ...

  9. 【原创】开源Math.NET基础数学类库使用(12)C#随机数扩展方法

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...

随机推荐

  1. selenium自动化之切换iframe

    许多人在执行脚本的时候会发现,明明自己的元素路径没写错啊!怎么还是报元素未找到的异常呢?是的,没错,你可能是遇上iframe啦!下面将介绍关于iframe的相关操作. 例子:以163邮箱登录页面为例 ...

  2. 【转】在Android Studio中下载Android SDK的两种方式(Android Studio3.0、windows)

    在Android Studio中下载Android SDK的两种方式(Android Studio3.0.windows) 方式一.设置HTTP Proxy1. 打开Settings2. 点击HTTP ...

  3. OpenLDAP搭建部署

    安装环境: linu系统:      centos7.2版本 OenLDAP:/openldap-2.4.44 下载地址:ftp://ftp.openldap.org/pub/OpenLDAP/ope ...

  4. (python)剑指Offer 面试题51:数组中重复的数字

    问题描述 在长度为n的数组中,所有的元素都是0到n-1的范围内. 数组中的某些数字是重复的,但不知道有几个重复的数字,也不知道重复了几次,请找出任意重复的数字. 例如,输入长度为7的数组{2,3,1, ...

  5. Fedora 28 UEFI模式安装过程记录

    这次的折腾是个意外.不过还是要记录一下. 多次做启动盘,把U盘做坏了.将U盘用量产工具修复以后就能做启动盘了.从官网下了Fedora 28的镜像(与CentOS同属RedHat系,尽量与鸟哥一致),用 ...

  6. 请教Amazon FBA里面Label Service, Stickerless, Commingled Inventory是什么意思?

    Accept Label Service接受标签服务,选择了以后下面的操作中会有一个让您打印标签的流程,您就可以按照FBA流程提示进行每一步标签服务的操作. Accept Stickless, Com ...

  7. SQL行列轉換方法(詳細例子)

    普通行列转换(version 1.0)仅针对sql server 2000提供静态和动态写法,version 2.0增加sql server 2005的有关写法. 问题:假设有张学生成绩表(tb)如下 ...

  8. Scrum立会报告+燃尽图(十月十八日总第九次):功能细化与数据库设计

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...

  9. Python:生成器的简单理解

    一.什么是生成器 在Python中,由于受到内存的限制,列表容量肯定是有限的.例如我们创建一个包含一亿个元素的列表,Python首先会在内存中开辟足够的空间来存储这个包含一亿个元素的列表,然后才允许用 ...

  10. 团队作业——王者光耀:team

    光耀101  <光耀101>是福州大学数计学院计算机专业推出的中国首部程序猿脱发养成节目.由张栋担任发起人,刘晨瑶.畅畅担任导师.  该节目召集了你猜多少位选手,通过任务.训练.考核,让选 ...