洛谷 P2233 [HNOI2002]公交车路线 解题报告
P2233 [HNOI2002]公交车路线
题目背景
在长沙城新建的环城公路上一共有8个公交站,分别为A、B、C、D、E、F、G、H。公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另外一个公交站往往要换几次车,例如从公交站A到公交站D,你就至少需要换3次车。

Tiger的方向感极其糟糕,我们知道从公交站A到公交E只需要换4次车就可以到达,可是tiger却总共换了n次车,注意tiger一旦到达公交站E,他不会愚蠢到再去换车。现在希望你计算一下tiger有多少种可能的乘车方案。
题目描述
输入输出格式
输入格式:
输入文件由bus.in读入,输入文件当中仅有一个正整数n(4<=n<=10000000),表示tiger从公交车站A到公交车站E共换了n次车。
输出格式:
输出到文件bus.out。输出文件仅有一个正整数,由于方案数很大,请输出方案数除以 1000后的余数。
先看普通的DP做法
\(dp[i][j]\)表示换了\(i\)次车目前在\(j\)车站的方案数
转移:\(dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1]\)
发现每一轮都是一样的,每一个车站也是
考虑矩阵优化
初始矩阵为(1代表出发点)
0 0 0 0 1 0 0 0 0
单次操作矩阵为
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0
矩阵快速幂即可
Code:
#include <cstdio>
#include <cstring>
#define mod 1000
struct matrix
{
int dx[10][10];
matrix()
{
memset(dx,0,sizeof(dx));
}
matrix friend operator *(matrix n1,matrix n2)
{
matrix n3;
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
for(int k=1;k<=9;k++)
n3.dx[i][j]=(n3.dx[i][j]+n1.dx[i][k]*n2.dx[k][j])%mod;
return n3;
}
};
matrix quick_pow(matrix d,int k)
{
matrix f;
for(int i=1;i<=9;i++) f.dx[i][i]=1;
while(k)
{
if(k&1)
f=f*d;
d=d*d;
k>>=1;
}
return f;
}
int main()
{
int n;
scanf("%d",&n);
matrix d;
for(int i=2;i<=8;i++)
d.dx[i][i+1]=1;
for(int i=2;i<=8;i++)
d.dx[i][i-1]=1;
d=quick_pow(d,n);
printf("%d\n",(d.dx[5][1]+d.dx[5][9])%mod);
return 0;
}
2018.7.13
洛谷 P2233 [HNOI2002]公交车路线 解题报告的更多相关文章
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- 洛谷 2233 [HNOI2002]公交车路线
题目戳这里 一句话题意 一个大小为8的环,求从1到5正好n步的方案数(途中不能经过5). Solution 巨说这个题目很水 应该是比较容易的DP,直接从把左边和右边的方案数加起来即可,但是有几个需要 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2233 [HNOI]公交车线路
洛谷 不知道大家做没做过传球游戏,这一题和传球游戏的转移方程几乎一样. 令\(A\)为\(1\)点,\(E\)为\(5\)点,那么\(f[i][j]\)代表第i步走到j的方案数. \[f[i][j]= ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- P2233 [HNOI2002]公交车路线
洛咕原题 dp->矩阵乘法 首先我们可以得出一个状态转移方程 f[i][j]=f[i-1][j-1]+f[i-1][j+1] 蓝后发现,我们可以把这转化为一个8*8的转移矩阵 然后跑一遍矩阵快速 ...
随机推荐
- Excel小技巧整理(持续更新)
合并某列中相同单元格 参考https://jingyan.baidu.com/article/9158e00006db70a25512286f.html 使用方法 先给需要合并的列排序,这样相同数据会 ...
- pytest使用笔记(三)——pytest+allure+jenkins配置使用
按照pytest使用笔记(二)把pytest+allure配置好后,现在在jenkins配置好,先实现手动构建(立个小目标) 一,安装jenkins插件 首页->系统管理->插件管理,从“ ...
- windows下Mysql安装启动及常用操作
1.下载mysql https://dev.mysql.com/downloads/ 2.配置环境变量 变量名:MYSQL_HOME 变量值:E:\MySql\mysql-8.0.15-winx64\ ...
- OpenLDAP备份和恢复
OpenLDAP中数据备份一般分为二种: 1)通过slapcat 指令进行备份 2)通过phpLDAPadmin控制台进行备份 备份方式1: 1)slapcat -v -l openldap-back ...
- 虹软2.0版本离线人脸识别C#类库分享
目前只封装了人脸检测部分的类库,供大家交流学习,肯定有问题,希望大家在阅读使用的时候及时反馈,谢谢!使用虹软技术开发完成 戳这里下载SDKgithub:https://github.com/dayAn ...
- sql批量更新
-----------------更新无锡医院名称 update Opt_DKI_Hospital set centerName =tmp.[医院名称] from Opt_DKI_Hospital h ...
- 亚马逊首次推出卖家APP 可掌握商品盈利状况
美国零售巨头亚马逊近日首次对外发布了第一款针对卖家和商户的客户端,帮助他们更加高效的管理商品和销售数据. 据美国科技新闻网站 Mashable 报道,之前亚马逊在商户移动客户端方面一直空缺,许多商户不 ...
- 1.openldap介绍
1.openldap介绍 OpenLDAP是轻型目录访问协议(Lightweight Directory Access Protocol,LDAP)的自由和开源的实现,在其OpenLDAP许可证下发行 ...
- php作用域限定符
双冒号::被认为是作用域限定操作符,用来指定类中不同的作用域级别.::左边表示的是作用域,右边表示的是访问的成员. 系统定义了两个作用域,self和parent.self表示当前类的作用域,在类之外的 ...
- Scrum立会报告+燃尽图(十月十七日总第八次):分配Alpha阶段任务
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...