洛谷 P2233 [HNOI2002]公交车路线 解题报告
P2233 [HNOI2002]公交车路线
题目背景
在长沙城新建的环城公路上一共有8个公交站,分别为A、B、C、D、E、F、G、H。公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另外一个公交站往往要换几次车,例如从公交站A到公交站D,你就至少需要换3次车。
Tiger的方向感极其糟糕,我们知道从公交站A到公交E只需要换4次车就可以到达,可是tiger却总共换了n次车,注意tiger一旦到达公交站E,他不会愚蠢到再去换车。现在希望你计算一下tiger有多少种可能的乘车方案。
题目描述
输入输出格式
输入格式:
输入文件由bus.in读入,输入文件当中仅有一个正整数n(4<=n<=10000000),表示tiger从公交车站A到公交车站E共换了n次车。
输出格式:
输出到文件bus.out。输出文件仅有一个正整数,由于方案数很大,请输出方案数除以 1000后的余数。
先看普通的DP做法
\(dp[i][j]\)表示换了\(i\)次车目前在\(j\)车站的方案数
转移:\(dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1]\)
发现每一轮都是一样的,每一个车站也是
考虑矩阵优化
初始矩阵为(1代表出发点)
0 0 0 0 1 0 0 0 0
单次操作矩阵为
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0
矩阵快速幂即可
Code:
#include <cstdio>
#include <cstring>
#define mod 1000
struct matrix
{
int dx[10][10];
matrix()
{
memset(dx,0,sizeof(dx));
}
matrix friend operator *(matrix n1,matrix n2)
{
matrix n3;
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
for(int k=1;k<=9;k++)
n3.dx[i][j]=(n3.dx[i][j]+n1.dx[i][k]*n2.dx[k][j])%mod;
return n3;
}
};
matrix quick_pow(matrix d,int k)
{
matrix f;
for(int i=1;i<=9;i++) f.dx[i][i]=1;
while(k)
{
if(k&1)
f=f*d;
d=d*d;
k>>=1;
}
return f;
}
int main()
{
int n;
scanf("%d",&n);
matrix d;
for(int i=2;i<=8;i++)
d.dx[i][i+1]=1;
for(int i=2;i<=8;i++)
d.dx[i][i-1]=1;
d=quick_pow(d,n);
printf("%d\n",(d.dx[5][1]+d.dx[5][9])%mod);
return 0;
}
2018.7.13
洛谷 P2233 [HNOI2002]公交车路线 解题报告的更多相关文章
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- 洛谷 2233 [HNOI2002]公交车路线
题目戳这里 一句话题意 一个大小为8的环,求从1到5正好n步的方案数(途中不能经过5). Solution 巨说这个题目很水 应该是比较容易的DP,直接从把左边和右边的方案数加起来即可,但是有几个需要 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2233 [HNOI]公交车线路
洛谷 不知道大家做没做过传球游戏,这一题和传球游戏的转移方程几乎一样. 令\(A\)为\(1\)点,\(E\)为\(5\)点,那么\(f[i][j]\)代表第i步走到j的方案数. \[f[i][j]= ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- P2233 [HNOI2002]公交车路线
洛咕原题 dp->矩阵乘法 首先我们可以得出一个状态转移方程 f[i][j]=f[i-1][j-1]+f[i-1][j+1] 蓝后发现,我们可以把这转化为一个8*8的转移矩阵 然后跑一遍矩阵快速 ...
随机推荐
- C# VS,连接到oracle 报要升级到8.多少版本的错
1:确定服务器的oracle版本 2:本地的客户端版本要和服务器一致 3:操作系统位数要一致
- Python+MySQL开发医院网上预约系统(课程设计)二
---恢复内容开始--- 1:报错 1.1.创建表时报错 CREATE TABLE Admin ( A_ID VARCHAR(20) NOT NULL AUTO_INCREMENT, p ...
- ab命令做压测测试
1. 背景:互联网发达的今天,大大小小的网站如雨后春笋,不断出现,但是想要做出一个网站很简单,但是想要做好一个网站,非常非常难,首先:网站做好之后的功能怎么样这都是次要的,主要的是你的网站能承受怎么样 ...
- java运行时内存分类
主要有java栈(虚拟机栈), 堆 ,方法区. 线程私有: 栈: 每个方法执行的时候 都会同时创建一个栈桢 Stack Frame 用于存储 局部变量表, 操作数栈,动态链接, 方法出口等信息 线程 ...
- Tempter of the Bone HDU 1010(DFS+剪枝)
Problem Description The doggie found a bone in an ancient maze, which fascinated him a lot. However, ...
- Python学习之路6 - 装饰器
装饰器 定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能.原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器的知识储备: 1.函数即“变量” 2.高阶函 ...
- windows环境下nginx服务器的安装与配置
转载至:http://www.cnblogs.com/hxxy2003/archive/2012/09/20/2695254.html nginx服务器是一个高性能的HTTP和反向代理服务器,它以稳定 ...
- 使用java中的注解@see
缘起 在写java时,有时需要写注释,而为了更好的描述,需要引用和参考其他代码.为了让阅读者更好的体验,javadoc中支持链接跳转,这就需要用到注解@see. @see用法 注解@see可以在注释中 ...
- Scrum冲刺博客汇总
第一篇 Scrum冲刺博客 http://www.cnblogs.com/LZTZ/p/8886296.html 第二篇 Scrum冲刺博客 http://www.cnblogs.com/LZTZ/p ...
- hibernate.cfg.xml案例
一.概念. hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库.既然学习Hibernate那么第 ...