Codeforces 671D. Roads in Yusland(树形DP+线段树)
调了半天居然还能是线段树写错了,药丸
这题大概是类似一个树形DP的东西。设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路。如果我们枚举每条路去转移,会发现这条路沿线上的其他子树的答案难以统计,那怎么办呢,我们可以让这条路向上回溯的时候顺便记录一下,于是有$val[i]$表示必修i这条路,并且修完当前子树的最小代价。
则有转移$dp[x]=min(val[j])$,且$j$这条路必须覆盖$x$。
$val[i]=(\sum dp[son])-dp[sonx]+val[i]$,且$i$这条路必须覆盖$sonx$。
转移用线段树来维护就好,至于怎么判断某条路是否覆盖两个点,只要递归到某条路的起点的时候把$val[i]$改为$(\sum dp[son])+cost[i]$,递归到某条路终点的时候把$val[i]$改为$inf$就好了。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=;
const ll inf=1e15;
struct poi{ll sum, delta;}tree[maxn<<];
struct tjm{int too, pre;}e[maxn<<], e2[maxn<<], e3[maxn<<];
struct qaq{int x, y, cost, pos;}q[maxn];
ll dp[maxn];
int n, m, x, y, tot, tot2, tot3, tott, l[maxn], r[maxn], last[maxn], last2[maxn], last3[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot]=(tjm){y, last[x]}; last[x]=tot;}
inline void add2(int x, int y){e2[++tot2]=(tjm){y, last2[x]}; last2[x]=tot2;}
inline void add3(int x, int y){e3[++tot3]=(tjm){y, last3[x]}; last3[x]=tot3;}
inline void up(int x) {tree[x].sum=min(tree[x<<].sum, tree[x<<|].sum);}
inline void addone(int x, int l, int r, ll delta)
{
tree[x].delta=min(inf, tree[x].delta+delta);
tree[x].sum=min(inf, tree[x].sum+delta);
}
inline void down(int x, int l, int r)
{
int mid=(l+r)>>;
addone(x<<, l, mid, tree[x].delta);
addone(x<<|, mid+, r, tree[x].delta);
tree[x].delta=;
}
void build(int x, int l, int r)
{
if(l==r) {tree[x].sum=inf; return;}
int mid=(l+r)>>;
build(x<<, l, mid); build(x<<|, mid+, r);
up(x);
}
void update(int x, int l, int r, int cx, ll delta)
{
if(l==r) {tree[x].sum=delta; return;}
down(x, l, r);
int mid=(l+r)>>;
if(cx<=mid) update(x<<, l, mid, cx, delta);
else update(x<<|, mid+, r, cx, delta);
up(x);
}
void change(int x, int l, int r, int cl, int cr, ll delta)
{
if(cl>cr) return;
if(cl<=l && r<=cr) {addone(x, l, r, delta); return;}
down(x, l, r);
int mid=(l+r)>>;
if(cl<=mid) change(x<<, l, mid, cl, cr, delta);
if(cr>mid) change(x<<|, mid+, r, cl, cr, delta);
up(x);
}
ll query(int x, int l, int r, int cl, int cr)
{
if(cl>cr) return inf;
if(cl<=l && r<=cr) return tree[x].sum;
down(x, l, r);
int mid=(l+r)>>; ll ans=inf;
if(cl<=mid) ans=query(x<<, l, mid, cl, cr);
if(cr>mid) ans=min(ans, query(x<<|, mid+, r, cl, cr));
return ans;
}
void dfs1(int x, int fa)
{
l[x]=++tott;
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa) dfs1(too, x);
r[x]=tott;
}
inline int find(int x)
{
int l=, r=m+;
while(l<r)
{
int mid=(l+r)>>;
if(q[mid].pos>=x) r=mid;
else l=mid+;
}
return l;
}
void dfs2(int x, int fa)
{
ll sum=;
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa) dfs2(too, x), sum=min(inf, sum+dp[too]);
if(x==) {dp[]=sum; return;}
for(int i=last2[x];i;i=e2[i].pre) update(, , m, e2[i].too, min(inf, q[e2[i].too].cost+sum));
for(int i=last3[x];i;i=e3[i].pre) update(, , m, e3[i].too, inf);
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa) change(, , m, find(l[too]), find(r[too]+)-, sum-dp[too]);
dp[x]=query(, , m, find(l[x]), find(r[x]+)-);
}
inline bool cmp(qaq a, qaq b){return a.pos<b.pos;}
int main()
{
read(n); read(m); build(, , m);
for(int i=;i<n;i++) read(x), read(y), add(x, y), add(y, x);
dfs1(, );
for(int i=;i<=m;i++) read(q[i].x), read(q[i].y), read(q[i].cost), q[i].pos=l[q[i].x];
sort(q+, q++m, cmp); q[m+].pos=n+;
for(int i=;i<=m;i++) add2(q[i].x, i), add3(q[i].y, i);
dfs2(, );
if(dp[]>=inf) return puts("-1"), ;
printf("%lld\n", dp[]);
}
Codeforces 671D. Roads in Yusland(树形DP+线段树)的更多相关文章
- Codeforces 671D Roads in Yusland [树形DP,线段树合并]
洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...
- Codeforces Round #530 (Div. 2) F (树形dp+线段树)
F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...
- codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem
dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.
- POJ 3162 Walking Race 树形DP+线段树
给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...
- Codeforces 629D Babaei and Birthday Cakes DP+线段树
题目:http://codeforces.com/contest/629/problem/D 题意:有n个蛋糕要叠起来,能叠起来的条件是蛋糕的下标比前面的大并且体积也比前面的大,问能叠成的最大体积 思 ...
- hdu5293 Tree chain problem 树形dp+线段树
题目:pid=5293">http://acm.hdu.edu.cn/showproblem.php?pid=5293 在一棵树中,给出若干条链和链的权值.求选取不相交的链使得权值和最 ...
- poj3162(树形dp+线段树求最大最小值)
题目链接:https://vjudge.net/problem/POJ-3162 题意:给一棵树,求每个结点的树上最远距离,记为a[i],然后求最大区间[l,r]满足区间内的max(a[i])-min ...
- 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...
- Codeforces Round #530 (Div. 2)F Cookies (树形dp+线段树)
题:https://codeforces.com/contest/1099/problem/F 题意:给定一个树,每个节点有俩个信息x和t,分别表示这个节点上的饼干个数和先手吃掉这个节点上一个饼干的的 ...
随机推荐
- 学习笔记之ubuntu修改固定IP脚本
一.shell脚本编程 二.正则表达式 三.linux修改IP的方法 #!/bin/bash cd /etc/network/ stty erase '^?' write_interfaces() { ...
- jquery中国地图插件
插件下载地址: http://www.17sucai.com/preview/1266961/2018-09-18/map/js/jsMap-1.1.0.min.js jsMap 项目介绍 这是一个功 ...
- nginx 源码阅读 core
ngx_config.h 数据对齐 #define ngx_align(d, a) (((d) + (a - 1)) & ~(a - 1)) ngx_core.h #define ng ...
- Tomcat源码学习(2)——启动过程分析
Tomcat启动过程分析 启动 tomcat 时,Windows下执行 startup.bat :Linux下执行 startup.sh 文件,实际上最后都是调用 org.apache.catalin ...
- ubuntu 设置全局代理
ubuntu配置shadowsocks全局代理 在mac.window平台下都有shadowsocks客户端,因此这两个平台不叙述太多,现在介绍ubuntu下的配置方法. 1.安装python lin ...
- python_MySQL 数据库操作
Python中的mysql操作可以使用MySQLdb模块来完成.它符合Python社区设计的Python Database API SpecificationV2.0标准,所以与其他的数据库操作的AP ...
- Android数据储存之SQLiteDatabase 简单增删改查
SQLiteDatabase 使用 SQLiteDatabase提供如下方法来打开一个文件对应的数据库: openDatabase(String path, SQLiteDatabase.Cursor ...
- txt文件存储问题
一.实际大小与占用空间不一致: 1.占用空间和磁盘有关,一般磁盘存储最小大小为4kb(4096字节). 2.当txt文件中仅有1个数字‘5’的时候,大小显示为1个字节(属性看,列表详细不精确),占用空 ...
- HDU 4489 The King’s Ups and Downs dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4489 The King's Ups and Downs Time Limit: 2000/1000 ...
- 《我是IT小小鸟》读后感
<我是IT小小鸟>读后感 说实话,我根本不喜欢看这本书,要不是因为老师要求我也不会去看的,其实当老师提起这本书的时候我还是有点兴趣,去看的,可是看了很多后,觉得这根本不适合我,里面说的都是 ...