hdu2065"红色病毒"问题(指数母函数+快速幂取模)
"红色病毒"问题
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9329 Accepted Submission(s): 3816
现在有一长度为N的字符串,满足一下条件:
(1) 字符串仅由A,B,C,D四个字母组成;
(2) A出现偶数次(也可以不出现);
(3) C出现偶数次(也可以不出现);
计算满足条件的字符串个数.
当N=2时,所有满足条件的字符串有如下6个:BB,BD,DB,DD,AA,CC.
由于这个数据肯能非常庞大,你只要给出最后两位数字即可.
用母函数来做
A:(1 + x^2/1! + x^4/2! + ….);
B:(1 + x/1! + x^2/2! + x^3/3! + …);
C:(1 + x^2/1! + x^4/2! + ….);
D:(1 + x/1! + x^2/2! + x^3/3! + …);
可以得到
G(x) = (1 + x^2/1! + x^4/2! + ….)2 * (1 + x/1! + x^2/2! + x^3/3! + …)2;
由泰勒展开式
ex = 1 + x/1! + x^2/2! + x^3/3! + …
e-x = 1 - x/1! + x^2/2! - x^3/3! + …
得到
G(x) = e^2x + ((e^x + e^-x)/2)2;
= (1/4) * (^e2x + 1)2
= (1/4) * (e^4x + 2*e^2x + 1);
又因为:
e4x = 1 + (4x)/1! + (4x)^2/2! + (4x)^3/3! + … + (4x)^n/n!;
e2x = 1 + (2x)/1! + (2x)^2/2! + (2x)^3/3! + … + (2x)^n/n!;
所以:
n次幂的排列数为 (1/4)(4^n + 2*2^n)
化简为(4^(n-1)+2^(n-1))%100
因为数据比较大,所以要用到快速幂取模
#include<bits/stdc++.h>
using namespace std;
long long mod_exp(long long a, long long b, long long c) //快速幂取余a^b%c
{
long long res, t;
res = % c;
t = a % c;
while (b)
{
if (b & )
{
res = res * t % c;
}
t = t * t % c;
b >>= ;
}
return res;
}
int main()
{
int t;
while(~scanf("%d",&t),t)
{
int cases=;
while(t--)
{ cases++;
long long n;scanf("%lld",&n);
long long ans=(mod_exp(,n-,)+mod_exp(,n-,))%;
printf("Case %d: %lld\n",cases,ans); }
printf("\n");
}
return ;
}
https://blog.csdn.net/weixin_39778570/article/details/82256128
hdu2065"红色病毒"问题(指数母函数+快速幂取模)的更多相关文章
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
- POJ3641-Pseudoprime numbers(快速幂取模)
题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
- HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模
小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) To ...
- CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...
- HDU1013,1163 ,2035九余数定理 快速幂取模
1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...
- Powmod快速幂取模
快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算 ...
随机推荐
- Spring(三)之Ioc、Bean、Scope讲解
Spring容器是Spring Framework的核心.容器将创建对象,将它们连接在一起,配置它们,并管理从创建到销毁的整个生命周期.Spring容器使用DI来管理组成应用程序的组件.这些对象称为S ...
- linux使用秘钥登录(禁用root密码登录)
目的:为了巩固线上外网服务器的安全,避免黑客攻击植入木马,初步决定禁用root密码登录(安全强度低),统一使用秘钥登录(4096位长度,安全性较高) 具体操作如下: 一.生成ssh秘钥: ssh-ke ...
- 字符型设备驱动程序-first-printf以及点亮LED灯(三)
根据 字符型设备驱动程序-first-printf以及点亮LED灯(二) 学习 修改函数 中的printf 为 printk. #include <linux/module.h> /* ...
- Oracle11gR2(ASM,UDEV)的RAC搭建安装
基本信息: 1) 安装包: 操作系统:rhel-server-6.7-x86_64-dvd.iso rac安装包: Oracle11gR2:linux.x64_11gR2_database_1of2. ...
- iOS:位置相关(18-03-09更)
1.定位设置 2.定位页面逻辑 1.定位设置 2.定位页面逻辑 1).第一次进入该VC,在 viewDidLoad 调用刷新页面 refreshLocationView .这时用户还没决定,会刷出“正 ...
- 2019年,iOS开发的你不可或缺的进阶之路!
序言 我相信很多人都在说,iOS行业不好了,iOS现在行情越来越难了,失业的人比找工作的人还要多.失业即相当于转行,跳槽即相当于降低自己的身价.那么做iOS开发的你,你是否在时刻准备着跳槽或者转行了. ...
- BUAA OO 2019 第二单元作业总结
目录 总 架构 controller model view 优化算法 Look 算法 多种算法取优 预测未来 多线程 第五次作业 第六次作业 第七次作业 代码静态分析 UML 类图 类复杂度 类总代码 ...
- 数组的定义和使用,理解多维数组和Array类
数组的作用 在执行程序的过程中,通常会需要存储大量数据.如果只有少量数据,那么通过声明变量,存储到变量中即可.但当我们的数据是20个.40个甚至是100以上时,就意味着需要声明很多变量,这是不现实的, ...
- #leetcode刷题之路22-括号生成
给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合. 例如,给出 n = 3,生成结果为:[ "((()))", "(()())&q ...
- mac终端 login: login: Could not determine audit condition
手速太快,误操作:sudo chmod -R 777 / 这会导致终端命令用不了了,再次打开终端提示: Last login: Fri Jul 13 10:09:35 on ttys001 login ...