Going Home

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters
a house. The task is complicated with the restriction that each house can accommodate only one little man. 



Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates
there is a little man on that point. 




You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28
————————————————————————————————————
题目的意思是给出一张图,H表示房子,m表示人,人只能上下左右移动一格且花费为1,问所有的人进入房子花费最少是多少?
思路:
方法一:最小费最大流。建图时将每个人和每个房子两两之间建边,流量为1花费为人与房的曼哈顿距离。再加一个源点与每个人建边流量为1花费为0,一个汇点与每个房子建边流量为1花费为0,求源点到汇点的最小花费即可。
方法二:二分图最大权匹配,根据距离关系建立二分图。KM算法解决
方法一:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
#include <vector>
#include <stack>
#include <set>
#include <map>
using namespace std;
const int MAXN=10000;
const int MAXM=100000;
const int INF=0x3f3f3f3f;
struct Edge{
int to,next,cap,flow,cost;
} edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;
struct point{
int x,y;
};
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof head);
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].flow=0;
edge[tol].cost=cost;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;
edge[tol].cap=0;
edge[tol].flow=0;
edge[tol].cost=-cost;
edge[tol].next=head[v];
head[v]=tol++;
} bool spfa(int s,int t)
{
queue<int>q;
for(int i=0;i<N;i++)
{
dis[i]=INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
{
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-1)return false;
return true;
}
int MincostMaxflow(int s,int t)
{
int flow=0;
int cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return cost;
} int main()
{
char mp[105][105];
int m,n;
while(~scanf("%d%d",&n,&m)&&(m||n))
{
point H[105],P[105];
int h=0,p=0;
for(int i=0;i<n;i++)
{
scanf("%s",&mp[i]);
for(int j=0;j<m;j++)
{
if(mp[i][j]=='H')
{
H[h].x=i;
H[h].y=j;
h++;
}
else if(mp[i][j]=='m')
{
P[p].x=i;
P[p].y=j;
p++;
}
}
}
init(p+h+2);
for(int i=0;i<h;i++)
for(int j=0;j<p;j++)
{
int c=fabs(H[i].x-P[j].x)+fabs(H[i].y-P[j].y);
addedge(i+1,h+j+1,1,c);
} for(int i=0;i<h;i++)
{
addedge(0,i+1,1,0);
}
for(int i=0;i<p;i++)
{
addedge(h+1+i,h+p+1,1,0);
}
printf("%d\n",MincostMaxflow(0,h+p+1)); }
}

方法二:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF=0x3f3f3f3f;
const int MAXN = 505;
int g[MAXN][MAXN];
int lx[MAXN],ly[MAXN]; //顶标
int linky[MAXN];
int visx[MAXN],visy[MAXN];
int slack[MAXN];
char mp[MAXN][MAXN];
int nx,ny;
bool find(int x)
{
visx[x] = true;
for(int y = 0; y < ny; y++)
{
if(visy[y])
continue;
int t = lx[x] + ly[y] - g[x][y];
if(t==0)
{
visy[y] = true;
if(linky[y]==-1 || find(linky[y]))
{
linky[y] = x;
return true; //找到增广轨
}
}
else if(slack[y] > t)
slack[y] = t;
}
return false; //没有找到增广轨(说明顶点x没有对应的匹配,与完备匹配(相等子图的完备匹配)不符)
} int KM() //返回最优匹配的值
{
int i,j;
memset(linky,-1,sizeof(linky));
memset(ly,0,sizeof(ly));
for(i = 0; i < nx; i++)
for(j = 0,lx[i] = -INF; j < ny; j++)
lx[i] = max(lx[i],g[i][j]);
for(int x = 0; x < nx; x++)
{
for(i = 0; i < ny; i++)
slack[i] = INF;
while(true)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy));
if(find(x)) //找到增广轨,退出
break;
int d = INF;
for(i = 0; i < ny; i++) //没找到,对l做调整(这会增加相等子图的边),重新找
{
if(!visy[i] && d > slack[i])
d = slack[i];
}
for(i = 0; i < nx; i++)
{
if(visx[i])
lx[i] -= d;
}
for(i = 0; i < ny; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int result = 0;
for(i = 0; i < ny; i++)
if(linky[i]>-1)
result += g[linky[i]][i];
return result;
} int main()
{
int n,m;
while(~scanf("%d%d",&n,&m)&&(n||m))
{
for(int i=0; i<n; i++)
{
scanf("%s",mp[i]);
}
int cnt=0;
int CNT=0;
memset(g,-INF,sizeof g);
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
{
if(mp[i][j]=='m')
{
int CNT=0;
for(int I=0; I<n; I++)
for(int J=0; J<m; J++)
{
if(mp[I][J]=='H')
{
g[cnt][CNT++]=-(abs(i-I)+abs(j-J));
}
}
cnt++;
} }
nx=ny=cnt;
printf("%d\n",-KM());
}
return 0;
}

POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏的更多相关文章

  1. c++ 字符串流 sstream(常用于格式转换) 分类: C/C++ 2014-11-08 17:20 150人阅读 评论(0) 收藏

    使用stringstream对象简化类型转换 C++标准库中的<sstream>提供了比ANSI C的<stdio.h>更高级的一些功能,即单纯性.类型安全和可扩展性.在本文中 ...

  2. HDU1045 Fire Net(DFS枚举||二分图匹配) 2016-07-24 13:23 99人阅读 评论(0) 收藏

    Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...

  3. POJ1273&&Hdu1532 Drainage Ditches(最大流dinic) 2017-02-11 16:28 54人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. 二分图匹配(KM算法)n^4 分类: ACM TYPE 2014-10-04 11:36 88人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> #incl ...

  5. 二分图匹配(KM算法)n^3 分类: ACM TYPE 2014-10-01 21:46 98人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> const ...

  6. 二分图匹配 分类: ACM TYPE 2014-10-01 19:57 94人阅读 评论(0) 收藏

    #include<cstdio> #include<cstring> using namespace std; bool map[505][505]; int n, k; bo ...

  7. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  8. 【BZOJ 3308】 3308: 九月的咖啡店 (费用流|二分图最大权匹配)

    3308: 九月的咖啡店 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 244  Solved: 86 Description 深绘里在九份开了一家咖 ...

  9. [hdu1533]二分图最大权匹配 || 最小费用最大流

    题意:给一个n*m的地图,'m'表示人,'H'表示房子,求所有人都回到房子所走的距离之和的最小值(距离为曼哈顿距离). 思路:比较明显的二分图最大权匹配模型,将每个人向房子连一条边,边权为曼哈顿距离的 ...

随机推荐

  1. Oracle归档日志与非归档日志的切换及路径设置

    --==================== -- Oracle 归档日志 --==================== Oracle可以将联机日志文件保存到多个不同的位置,将联机日志转换为归档日志的 ...

  2. emacs之切换h/cpp配置

    emacsConfig/switch-file-setting.el (defun switch-c () (global-set-key (kbd "<C-return>&qu ...

  3. 黄聪:C#程序中判断是否处在DEBUG调试状态或者RELEASE发布状态

    习惯了用老方式(注释的方式)来对程序进行调试,不过昨天才发现这样调试存在很大的隐患:在工程发布的时候如果忘记把该注释的代码注释掉,而让这些调试信息随工程一起发布,如果是可见的调试信息倒好发现,如果不是 ...

  4. bzoj2865 字符串识别

    Description XX在进行字符串研究的时候,遇到了一个十分棘手的问题. 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: ...

  5. Linux新手入门:Unable to locate package错误解决办法

    最近刚开始接触Linux,在虚拟机中装了个Ubuntu,当前的版本是Ubuntu 11.10,装好后自然少不了安装一些软件,在设置了软件的源后,就开始了 sudo apt-get install,结果 ...

  6. Custom Exception in ASP.NET Web API 2 with Custom HttpResponse Message

    A benefit of using ASP.NET Web API is that it can be consumed by any client with the capability of m ...

  7. Oracle RAC 集群环境下日志文件结构

    Oracle RAC 集群环境下日志文件结构 在Oracle RAC环境中,对集群中的日志的定期检查是必不可少的.通过查看集群日志,可以早期定位集群环境中出现的问题,以便将问题消灭在萌芽状态.简单介绍 ...

  8. MVC框架介绍

    第一,建立一个解决方案然后在该解决方案下面新建mvc空项目. 第二,下面先对该项目的一些文件进行介绍: MVC项目文件夹说明: 1.(App_Data):用来保存数据文件,比如XML文件等 2.(Ap ...

  9. django多对多数据库建立 以及数据的传输 并进行增加 删除 修改

    多对多数据库的建立 class Host(models.Model): nid = models.AutoField(primary_key=True) #自增id hostname = models ...

  10. sql中纵表变横表

    纵表格式如图所示: 查询sql语句如下: ),content)content,Date from SummerChina ' 变成横表如图所示: 纵表变横表sql语句如下: select Time, ...