A - Problem A. Integers Exhibition

留坑。

B - Problem B. Harvest of Apples

题意:计算$\sum_{i = 0}^{i = m}C(n, i)$

思路:由$sum_{i = 0}^{i = m}C(n,i)$可以得到$sum_{i = 0}^{i = m + 1}C(n,i)$以及$sum_{i = 0}^{i = m}C(n + 1,i)$然后用莫对算法求解

  1. #include<bits/stdc++.h>
  2.  
  3. using namespace std;
  4.  
  5. typedef long long ll;
  6.  
  7. const ll MOD = 1e9 + ;
  8. const int maxn = 1e5 + ;
  9.  
  10. int unit;
  11. ll inv[maxn];
  12. ll invfac[maxn];
  13. ll fac[maxn];
  14. ll ans[maxn];
  15. int n, m;
  16.  
  17. struct node{
  18. int l, r, id;
  19. inline node(){}
  20. inline node(int l, int r, int id) :l(l), r(r), id(id){}
  21. inline bool operator < (const node &b) const
  22. {
  23. if(l / unit != b.l / unit) return l / unit < b.l / unit;
  24. else return r < b.r;
  25. }
  26. }arr[maxn];
  27.  
  28. inline void Init()
  29. {
  30. fac[] = invfac[] = ;
  31. fac[] = inv[] = invfac[] = ;
  32. for(int i = ; i < maxn; ++i)
  33. {
  34. fac[i] = fac[i - ] * i % MOD;
  35. inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD;
  36. invfac[i] = invfac[i - ] * inv[i] % MOD;
  37. }
  38. }
  39.  
  40. inline ll cal(int a, int b)
  41. {
  42. ll res = fac[a] * invfac[b] % MOD * invfac[a - b] % MOD;
  43. return res;
  44. }
  45.  
  46. inline void work()
  47. {
  48. ll tmp = ;
  49. for(int i = ; i <= arr[].r; ++i)
  50. {
  51. tmp = (tmp + cal(arr[].l, i)) % MOD;
  52. }
  53. ans[arr[].id] = tmp;
  54. int L = arr[].l, R = arr[].r;
  55. for(int i = ; i <= n; ++i)
  56. {
  57. while(L < arr[i].l)
  58. {
  59. tmp = (tmp * % MOD- cal(L++, R) + MOD) % MOD;
  60. }
  61. while(L > arr[i].l)
  62. {
  63. tmp = (tmp + cal(--L, R) + MOD) % MOD * inv[] % MOD;
  64. }
  65. while(R < arr[i].r)
  66. {
  67. tmp = (tmp + cal(L, ++R)) % MOD;
  68. }
  69. while(R > arr[i].r)
  70. {
  71. tmp = (tmp - cal(L, R--) + MOD) % MOD;
  72. }
  73. ans[arr[i].id] = tmp;
  74. }
  75. }
  76.  
  77. int main()
  78. {
  79. Init();
  80. scanf("%d", &n);
  81. for(int i = ; i <= n; ++i)
  82. {
  83. scanf("%d %d", &arr[i].l, &arr[i].r);
  84. arr[i].id = i;
  85. }
  86. unit = (int)sqrt(n);
  87. sort(arr + , arr + + n);
  88. work();
  89. for(int i = ; i <= n; ++i)
  90. {
  91. printf("%lld\n", ans[i]);
  92. }
  93. return ;
  94. }

C - Problem C. Problems on a Tree

留坑。

D - Problem D. Nothing is Impossible

题意:给出n道题目,每道题目有$a_i种正确选择,b_i种错误选择$ 一共有m个人,所有人都要选择一个题目集合去做,相当于去试答案,问最多能试出多少道题目答案

思路:排序,前缀积。

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. #define N 110
  5. #define ll long long
  6.  
  7. struct node
  8. {
  9. int a, b, sum;
  10. inline void scan()
  11. {
  12. scanf("%d%d", &a, &b);
  13. sum = a + b;
  14. }
  15. inline bool operator < (const node &r) const
  16. {
  17. return sum < r.sum;
  18. }
  19. }arr[N];
  20.  
  21. int t, n, m;
  22. ll sum;
  23.  
  24. int main()
  25. {
  26. scanf("%d", &t);
  27. while (t--)
  28. {
  29. scanf("%d%d", &n, &m);
  30. for (int i = ; i <= n; ++i) arr[i].scan();
  31. sort(arr + , arr + + n);
  32. int ans = ; sum = ;
  33. for (int i = ; i <= n; ++i)
  34. {
  35. sum *= arr[i].sum;
  36. if (sum > m) break;
  37. ans = i;
  38. }
  39. printf("%d\n", ans);
  40. }
  41. return ;
  42. }

E - Problem E. Matrix from Arrays

题意:给出一种构造二维数组的构造方式,然后给出一个左上角,一个右下角,求这个矩形内的数和

思路:打表找规律发现,大矩阵是由若干个$2L \cdot 2L$个小矩阵构成的,那么把给出的矩阵分成四块,整块整块的处理,边边角角的处理

  1. #include<bits/stdc++.h>
  2.  
  3. using namespace std;
  4.  
  5. #define N 110
  6.  
  7. typedef long long ll;
  8.  
  9. int n;
  10. int x[], y[];
  11. ll arr[N];
  12. ll G[N][N];
  13.  
  14. inline ll cal(int x,int y)
  15. {
  16. if(x < || y < ) return 0ll;
  17. ll res = G[n - ][n - ] * (x / n) * (y / n) + G[n - ][y % n] * (x / n) + G[x % n][n - ] * (y / n) + G[x % n][y % n];
  18. return res;
  19. }
  20.  
  21. int main()
  22. {
  23. int t;
  24. scanf("%d", &t);
  25. while(t--)
  26. {
  27. scanf("%d", &n);
  28. for(int i = ; i < n; ++i)
  29. {
  30. scanf("%lld", arr + i);
  31. }
  32. for(int i = , cnt = ; i < (n << ); ++i)
  33. {
  34. for(int j = ; j <= i; ++j)
  35. {
  36. G[j][i - j] = arr[cnt];
  37. cnt = (cnt + ) % n;
  38. }
  39. }
  40. n <<= ;
  41. for(int i = ; i < n; ++i)
  42. {
  43. for(int j = ; j < n; ++j)
  44. {
  45. G[i][j] += (i ? G[i - ][j] : );
  46. G[i][j] += (j ? G[i][j - ] : );
  47. G[i][j] -= ((i && j) ? G[i - ][j - ] : );
  48. }
  49. }
  50. int q;
  51. scanf("%d", &q);
  52. while(q--)
  53. {
  54. scanf("%d %d %d %d", &x[], &y[], &x[], &y[]);
  55. ll ans = cal(x[], y[]) - cal(x[] - , y[]) - cal(x[], y[] - ) + cal(x[] - , y[] - );
  56. printf("%lld\n", ans);
  57. }
  58. }
  59. return ;
  60. }
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. #define N 1100
  5. #define ll long long
  6.  
  7. int t, n, q, x[], y[];
  8. ll arr[N];
  9. ll G[N][N];
  10.  
  11. int main()
  12. {
  13. scanf("%d", &t);
  14. while (t--)
  15. {
  16. scanf("%d", &n);
  17. for (int i = ; i <= n; ++i) scanf("%lld", arr + i);
  18. memset(G, , sizeof G);
  19. for (int i = , cnt = ; i <= (n << ); ++i)
  20. {
  21. for (int j = ; j <= i; ++j)
  22. {
  23. G[j][i - j] = arr[cnt + ];
  24. cnt = (cnt + ) % n;
  25. }
  26. }
  27. n <<= ;
  28. ll base = ;
  29. for (int i = ; i < n; ++i) for (int j = ; j < n; ++j) base += G[i][j];
  30. scanf("%d", &q);
  31. while (q--)
  32. {
  33. scanf("%d%d%d%d", &x[], &y[], &x[], &y[]);
  34. ll ans = , tmp;
  35. //compute Big
  36. ll xl = (x[] - x[] + ) / n, yl = (y[] - y[] + ) / n; ans += (base * xl * yl);
  37. //compute lower_left corner
  38. tmp = ;
  39. for (int i = x[] + xl * n; i <= x[]; ++i)
  40. {
  41. for (int j = y[], cnt = ; cnt <= n; ++cnt, ++j)
  42. tmp += G[i % n][j % n];
  43. }
  44. //compute upper_right corner
  45. ans += tmp * yl; tmp = ;
  46. for (int i = x[], cnt = ; cnt <= n; ++cnt, ++i)
  47. {
  48. for (int j = y[] + yl * n; j <= y[]; ++j)
  49. tmp += G[i % n][j % n];
  50. }
  51. //compute lower_right corner
  52. ans += tmp * xl; tmp = ;
  53. for (int i = x[] + xl * n; i <= x[]; ++i)
  54. {
  55. for (int j = y[] + yl * n; j <= y[]; ++j)
  56. ans += G[i % n][j % n];
  57. }
  58. printf("%lld\n", ans);
  59. }
  60. }
  61. return ;
  62. }

F - Problem F. Travel Through Time

留坑。

G - Problem G. Depth-First Search

留坑。

H - Problem H. Eat Cards, Have Fun

留坑。

I - Problem I. Delightful Formulas

留坑。

J - Problem J. Let Sudoku Rotate

题意:给出一个16 * 16 的数独, 有一些4 * 4 的矩阵被逆时针旋转过,然后求恢复最少需要旋转多少次

思路:爆搜,两条剪枝,一个是判断是否有冲突,一个是判断当前步数是否比已有答案大

  1. #include<bits/stdc++.h>
  2.  
  3. using namespace std;
  4.  
  5. const int maxn = 1e2 + ;
  6.  
  7. int ans;
  8. bool vis[];
  9. char s[];
  10. int G[maxn][maxn];
  11.  
  12. inline bool judge(int x,int y)
  13. {
  14. for(int i = x * - ; i <= x * ; ++i)
  15. {
  16. memset(vis, false, sizeof vis);
  17. for(int j = ; j <= y * ; ++j)
  18. {
  19. if(vis[G[i][j]]) return false;
  20. vis[G[i][j]] = true;
  21. }
  22. }
  23. for(int i = y * - ; i <= y * ; ++i)
  24. {
  25. memset(vis, false, sizeof vis);
  26. for(int j = ; j <= x * ; ++j)
  27. {
  28. if(vis[G[j][i]]) return false;
  29. vis[G[j][i]] = true;
  30. }
  31. }
  32. return true;
  33. }
  34.  
  35. inline void fun(int x, int y)
  36. {
  37. int tmp[][];
  38. for(int i = ; i <= ; ++i)
  39. {
  40. for(int j = ; j <= ; ++j)
  41. {
  42. tmp[j][ - i + ] = G[(x - ) * + i][(y - ) * + j];
  43. }
  44. }
  45. for(int i = ; i <= ; ++i)
  46. {
  47. for(int j = ; j <= ; ++j)
  48. {
  49. G[(x - ) * + i][(y - ) * + j] = tmp[i][j];
  50. }
  51. }
  52. }
  53. inline void DFS(int x,int y,int res)
  54. {
  55. if(res >= ans) return ;
  56. if(y > )
  57. {
  58. DFS(x + , , res);
  59. return ;
  60. }
  61. if(x == )
  62. {
  63. ans = min(ans, res);
  64. return ;
  65. }
  66. for(int i = ; i < ; ++i)
  67. {
  68. if(i)
  69. {
  70. fun(x, y);
  71. /* if(x == 3 && y == 1 && i == 1)
  72. {
  73. for(int i = x * 4 - 3; i <= x * 4; ++i)
  74. {
  75. for(int j = y * 4 - 3; j <= y * 4; ++j)
  76. {
  77. printf("%d%c", G[i][j], " \n"[j == y * 4]);
  78. }
  79. }
  80. }*/
  81. }
  82. if(judge(x, y))
  83. {
  84. DFS(x, y + , res + i);
  85. }
  86. }
  87. fun(x, y);
  88. }
  89.  
  90. int main()
  91. {
  92. int t;
  93. scanf("%d", &t);
  94. while(t--)
  95. {
  96. ans = << ;
  97. for(int i = ; i <= ; ++i)
  98. {
  99. scanf("%s", s + );
  100. for(int j = ; j <= ; ++j)
  101. {
  102. if(s[j] >= '' && s[j] <= '')
  103. {
  104. G[i][j] = s[j] - '';
  105. }
  106. else if(s[j] >= 'A' && s[j] <= 'F')
  107. {
  108. G[i][j] = (s[j] - 'A') + ;
  109. }
  110. }
  111. }
  112. // fun(1, 1);
  113. DFS(, , );
  114. printf("%d\n", ans);
  115. }
  116. return ;
  117. }

K - Problem K. Expression in Memories

按题意模拟即可

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. #define N 100010
  5.  
  6. int t;
  7. char s[N];
  8.  
  9. int main()
  10. {
  11. scanf("%d", &t);
  12. while (t--)
  13. {
  14. scanf("%s", s);
  15. bool flag = true;
  16. int len = strlen(s);
  17. for(int i = ; i < len; ++i)
  18. {
  19. if(s[i] == '*' || s[i] == '+')
  20. {
  21. if(i == || i == len - )
  22. {
  23. flag = false;
  24. break;
  25. }
  26. else if(s[i + ] == '*' || s[i + ] == '+')
  27. {
  28. flag = false;
  29. break;
  30. }
  31. }
  32. else if(s[i] == '')
  33. {
  34. if(i == || s[i - ] == '*' || s[i - ] == '+')
  35. {
  36. if(i + < len && s[i + ] >= '' && s[i + ] <= '')
  37. {
  38. flag = false;
  39. break;
  40. }
  41. else if(s[i + ] == '?') s[i + ] = '+';
  42. }
  43. }
  44. else if(s[i] == '?')
  45. {
  46. s[i] = '';
  47. }
  48. }
  49. if(flag)
  50. {
  51. printf("%s\n", s);
  52. }
  53. else
  54. {
  55. printf("IMPOSSIBLE\n");
  56. }
  57. }
  58. return ;
  59. }

L - Problem L. Graph Theory Homework

水。

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. #define N 100010
  5.  
  6. int t, n;
  7. int arr[N];
  8.  
  9. int main()
  10. {
  11. scanf("%d", &t);
  12. while (t--)
  13. {
  14. scanf("%d", &n);
  15. for (int i = ; i <= n; ++i) scanf("%d", arr + i);
  16. int ans = (int)floor(sqrt(abs(arr[] - arr[n])));
  17. printf("%d\n", ans);
  18. }
  19. return ;
  20. }

2018 Multi-University Training Contest 4 Solution的更多相关文章

  1. 2018 Multi-University Training Contest 1 Solution

    A - Maximum Multiple 题意:给出一个n 找x, y, z 使得$n = x + y +z$ 并且 $n \equiv 0 \pmod x, n \equiv 0 \pmod y, ...

  2. 2018 Multi-University Training Contest 2 Solution

    A - Absolute 留坑. B - Counting Permutations 留坑. C - Cover 留坑. D - Game puts("Yes") #include ...

  3. 2018 Multi-University Training Contest 3 Solution

    A - Problem A. Ascending Rating 题意:给出n个数,给出区间长度m.对于每个区间,初始值的max为0,cnt为0.遇到一个a[i] > ans, 更新ans并且cn ...

  4. 2018 Multi-University Training Contest 5 Solution

    A - Always Online Unsolved. B - Beautiful Now Solved. 题意: 给出一个n, k  每次可以将n这个数字上的某两位交换,最多交换k次,求交换后的最大 ...

  5. 2018 Multi-University Training Contest 6 Solution

    A - oval-and-rectangle 题意:给出一个椭圆的a 和 b,在$[0, b]中随机选择c$ 使得四个顶点在椭圆上构成一个矩形,求矩形周长期望 思路:求出每种矩形的周长,除以b(积分) ...

  6. 2018 Multi-University Training Contest 7 Solution

    A - Age of Moyu 题意:给出一张图,从1走到n,如果相邻两次走的边的权值不同,花费+1, 否则花费相同,求最小花费 思路:用set记录有当前点的最小花费有多少种方案到达,然后最短路 #i ...

  7. 2018 Multi-University Training Contest 8 Solution

    A - Character Encoding 题意:用m个$0-n-1$的数去构成k,求方案数 思路:当没有0-n-1这个条件是答案为C(k+m-1, m-1),减去有大于的关于n的情况,当有i个n时 ...

  8. 2018 Multi-University Training Contest 9 Solution

    A - Rikka with Nash Equilibrium 题意:构造一个$n * m$的矩阵,使得$[1, n * m]$ 中每个数只出现一次,并且纳什均衡只出现一次. 思路:从大到小的放置,每 ...

  9. 2018 Multi-University Training Contest 10 Solution

    A - Problem A.Alkane 留坑. B - Problem B. Beads 留坑. C - Problem C. Calculate 留坑. D - Problem D. Permut ...

随机推荐

  1. C语言各种存储模式的区别?最常用的存储模式有哪些?

    DOS用一种段地址结构来编址计算机的内存,每一个物理内存位置都有一个可通过段地址一偏移量的方式来访问的相关地址.为了支持这种段地址结构,大多数C编译程序都允许你用以下6种存储模式来创建程序: ---- ...

  2. 多线程的学习与GDI的学习

    今天又是一周的周五,感觉过的好快,我感觉不是期盼周末的到来,而是感觉现在已经习惯啦每天坐在这里敲代码,其实我是一个性格非常开朗的女生,现在不知道为什么感觉默默地坐在自己位置上面敲代码成为了我习以为常的 ...

  3. cocos2d-x游戏引擎核心之六——绘图原理和绘图技巧

    一.OpenGL基础 游戏引擎是对底层绘图接口的包装,Cocos2d-x 也一样,它是对不同平台下 OpenGL 的包装.OpenGL 全称为 Open Graphics Library,是一个开放的 ...

  4. 《C++ Primer Plus》12.6 复习各种(类和动态内存分配的)技术 笔记

    12.6.1 重载<<运算符要重新定义<<运算符,以便将它和cout一起用来显示对象的内容,请定义下面的友元运算符函数:ostream & operator<&l ...

  5. iOS性能调优系列(全)

    总结: 三类工具 基础工具 (NSLog的方式记录运行时间.) 性能工具.检测各个部分的性能表现,找出性能瓶颈 内存工具.检查内存正确性和内存使用效率 性能工具: 可以衡量CPU的使用,时间的消耗,电 ...

  6. my97datepicker 怎么设置页面加载时默认值为当天时间

    Demo示例如下:<script language="javascript" type="text/javascript" src="My97D ...

  7. UVa 10905 - Children's Game(求多个正整数排列后,所得的新的数字的极值)

    4thIIUCInter-University Programming Contest, 2005 A Children’s Game Input: standard input Output: st ...

  8. js判断手机型号

    由于oppo手机自带浏览器的高度底部多了144px导航栏 所以:专门针对oppo手机做适配: var dowphone = document.getElementById("dowphone ...

  9. Android TextView文字透明度和背景透明度设置

    textview1.setTextColor(Color.argb(255, 0, 255, 0)); //文字透明度 控件设为半透明: 控件名.getBackground().setAlpha(in ...

  10. 小程序开通微信支付 --- 微信商户平台绑定微信小程序APPID

    首先情况是这样的:现有公司有个公众号,已经开通了微信支付(已经有一个商户平台),现在需要开发 微信小程序(也有微信支付),如果在小程序里面重新申请 微信支付,就显得比较麻烦.腾讯官方已经提供了 一个商 ...