转载:http://www.bio-info-trainee.com/1327.html

收集了那么多的癌症细胞系的表达数据,拷贝数变异数据,突变数据,总不能放着让它发霉吧!

这些数据可以利用的地方非常多,但是在谷歌里面搜索引用了它的文章却不多,我挑了其中几个,解读了一下别人是如何利用这个数据的,当然,主要是用那个mRNA的表达数据咯!
这篇文献对CCLE的数据进行了八个步骤的处理,一个合格的生物信息学分析着完全可以重写这个过程
step1:Affymetrix U133 Plus2 DNA microarray gene expressions of 27 gastric cancer cell lines (Kato-III, IM95, SNU-620, SNU-16, OCUM-1, NUGC-4, 2313287, HUG1N, MKN45, NCIN87, KE39, AGS, SNU-5, SNU-216, NUGC-3, NUGC-2, MKN74, MKN7, RERFGC1B, GCIY, KE97, Fu97, SH10TC, MKN1, SNU-1, Hs746 T, HGC27) were downloaded from Cancer Cell Line Encyclopedia (CCLE) [16] in March 2013.
step2: Robust Multi-array Average (RMA) normalization was performed. Principal component analysis plot show no obvious batch effect.
step3: The normalized data is then collapsed by taking the probe sets with highest gene expression.
前三步是为了得到27个胃癌相关细胞系的mRNA表达矩阵,方法是下载cel文件,用RMA归一化,对多探针基因去最大表达量探针!

step4:Unsupervised hierarchical clustering (1-Spearman distance, average linkage) was performed on the cell lines using the aCGH data.

Putative driver genes of which copy number aberrations correlated to mRNA gene expression were identified to determine subtypes or clusters that are driven by different mechanisms. This was done using Mann Whitney U-test with p<0.05, and Spearman Correlation Coefficient test with Rho >0.6.

step5:We then performed consensus clustering[17] on the gene expression data of the 27 gastric cancer cell lines from CCLE using these putative driver genes. We selected k = 2 as it gives sufficiently stable similarity matrix.

step6: In order to assign new samples to this integrative cluster, significance analysis of microarray (SAM) [18]with threshold q<2.0 was used to generate subtype signature based on the mRNA expression data of the 1762 genes from the 27 gastric cancer cell lines in CCLE.

先用甲基化数据来聚类,得到putative driver genes,然后再用这些基因的表达数据来再次聚类,分成两类,然后对这两类进行SAM找差异基因

step7:ssGSEA (single sample GSEA)was used to estimate pathway activities of the gastric cancer cell line in the Molecular Signature Database v3.1 (Msigdb v3.1) [19][20]. The pathway activities are represented in enrichment scores which were rank normalized to [0.0, 1.0]. 
step8:SAM analysis was performed with threshold q<0.2, and fold change >2.0 (for up-regulated pathways), or <0.5 (for down-regulated pathways) to obtain subtype-specific pathways from the 27 gastric cell lines in CCLE.
这里既用来gene set的富集分析,又用来超几何分布的富集分析,结果去看看这篇文章就知道了!
 
这篇文章只用了CCLE的一个地方,就是看看不同cancer type里面的某个基因表达boxplot
这个图的数据用GEOquery可以得到,样本的分类信息也用GEOquery可以得到,这样就可以做下面这个图了,非常简单
Further, the Cancer Cell Line Encyclopedia (CCLE) database demonstrated that of 1062 cell lines representing 37 distinct cancer types, glioma cell lines express the highest levels of STK17A

结论就是:STK17A is highly expressed in glioma cell lines compared to other cancer types. Data was obtained through the Cancer Cell Line Encyclopedia (CCLE).

第三篇文献:http://www.nature.com/ncomms/2013/130709/ncomms3126/fig_tab/ncomms3126_F4.html

这篇文献更简单了,直接对这个表达矩阵进行聚类:
 
The 5,000 most variable genes were used for unsupervised clustering of cell lines by mRNA expression data. Cell lines are colour-coded (vertical bars) according to the reported tissue of origin (a PDF version that can be enlarged at high resolution is in Supplementary InformationSupplementary Fig. S4); horizontal labels at bottom indicate the dominating tissue types within the respective branches of the dendrogram. Most ovarian cancer cell lines (magenta) cluster together, interspersed with endometrial cell lines. However, some ovarian cancer cell lines cluster with other tissue types (*). Top right panels: neighbourhoods (1) of the top cell lines in our analysis, (2) of cell line IGROV1, and (3) of cell line A2780. For the ovarian cancer cell lines in these enlarged areas, the histological subtype as assigned in the original publication is indicated by coloured letters.
就直接拿整个表达矩阵即可,然后挑选变异最大的5000个基因来进行聚类,就可以得到类似的图

对CCLE数据库可以做的分析--转载的更多相关文章

  1. 利用GSEA对基因表达数据做富集分析

      image Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a p ...

  2. Oracle Hang分析--转载

    1. 数据库hang的几种可能性 oracle 死锁 或者系统负载非常高比如cpu使用或其他一些锁等待很高都可能导致系统hang住,比如大量的DX锁. 通常来说,我们所指的系统hang住,是指应用无响 ...

  3. sql server 本地复制订阅 实现数据库服务器 读写分离(转载)

    转载地址:http://www.cnblogs.com/echosong/p/3603270.html 再前段echosong 写了一遍关于mysql 数据同步实现业务读写分离的文章,今天咱们来看下S ...

  4. SpaceSyntax【空间句法】之DepthMapX学习:第一篇 数据的输入 与 能做哪些分析

    两部分,1需要喂什么东西给软件,2它能干什么(输出什么东西在下一篇讲) 博客园/B站/知乎/CSDN @秋意正寒 转载请在头部附上源地址 目录:https://www.cnblogs.com/onsu ...

  5. (转)Db2 数据库常见堵塞问题分析和处理

    原文:https://www.ibm.com/developerworks/cn/analytics/library/ba-lo-db2-common-blocking-problem-analyze ...

  6. 异动K线2--600532做一个分析时再给大家一只个股和近日大盘的分析

    http://bbs.tianya.cn/post-stocks-612892-3.shtml ————看了一页就感觉没什么太大的意义 选时重于选股 这是一条股市生存的基本法则 看看天涯真正的高手 现 ...

  7. 抓取摩拜单车API数据,并做可视化分析

    抓取摩拜单车API数据,并做可视化分析 纵聊天下 百家号|04-19 15:16 关注 警告:此篇文章仅作为学习研究参考用途,请不要用于非法目的. 摩拜是最早进入成都的共享单车,每天我从地铁站下来的时 ...

  8. 如何用SPSS做联合分析

    如何用SPSS做联合分析 如果产品的描述是由几个属性特征决定的,比如说mp3的音质.外形.容量.价格等等,商家为了确定哪个属性对消费者的影响最大,以及预测什么样的属性组合最受消费者的欢迎,选择的办法应 ...

  9. MongoDB数据库索引构建情况分析

    前面的话 本文将详细介绍MongoDB数据库索引构建情况分析 概述 创建索引可以加快索引相关的查询,但是会增加磁盘空间的消耗,降低写入性能.这时,就需要评判当前索引的构建情况是否合理.有4种方法可以使 ...

随机推荐

  1. ios 监听设备旋转方向

    -(void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation { if(fromI ...

  2. 09.Curator临时节点

        使用Curator也可以简化Ephemeral Node (临时节点)的操作.临时节点驻存在ZooKeeper中,当连接和session断掉时被删除.比如通过ZooKeeper发布服务,服务启 ...

  3. kafka简介【转】

    一.为什么需要消息系统 () 解耦 在项目启动之初来预测将来项目会碰到什么需求,是极其困难的.消息系统在处理过程中间插入了一个隐含的.基于数据的接口层,两边的处理过程都要实现这一接口.这允许你独立的扩 ...

  4. EasyUI之Layout布局和Tabs页签的使用

    1.JQuery EasyUI之LayOut布局 EasyUI是一款基于JQuery开发的前端框架,它集成很多漂亮的样式和相应的功能,大大方便了我们对前端开发的难度.对于web项目而言,主页面的一定是 ...

  5. Oracle HA 之 SERVICE和DRM实战

    第一部分:service实战 --oracle 11gR2中创建service的方法:db console和srvctl两种方法. --db console创建service方法-略 --srvctl ...

  6. 深究AngularJS——自定义服务详解(factory、service、provider)

    前言 3种创建自定义服务的方式.  Factory Service Provider 大家应该知道,AngularJS是后台人员在工作之余发明的,他主要应用了后台早就存在的分层思想.所以我们得了解下分 ...

  7. numpy中的convolve的理解

    https://blog.csdn.net/u011599639/article/details/76254442 函数 numpy.convolve(a, v, mode=‘full’),这是num ...

  8. windows下安装redis(转)

    add by zhj: redis相比memcached相比,性能上并没有绝对的优势.我们用redis的是因为它支持更多的数据类型,而且在分配给redis的内存用满了之后, redis也不会删除没有过 ...

  9. 详解maxlength属性在textarea里奇怪的表现

    这篇文章主要介绍了maxlength属性在textarea里奇怪的表现的相关资料,需要的朋友可以参考下 HTML5给表单带来了很多改变,比如今天要说的maxlength,这个属性可以限制输入框输入的最 ...

  10. [GDAL]编译64位GDAL1.10

    环境VS2010,swigwin-2.0.11 1. 打开nmake.opt文件,找到SWIG=swig.exe这一句,假如没有将swig的目录添加到环境变量中,那么将这句后面的swig.exe修改为 ...