NumPy 高级索引

NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。

整数数组索引

以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素。

实例

import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y)

输出结果为:

[1  4  5]

以下实例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。

实例

import numpy as np x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) print ('我们的数组是:' ) print (x) print ('\n') rows = np.array([[0,0],[3,3]]) cols = np.array([[0,2],[0,2]]) y = x[rows,cols] print ('这个数组的四个角元素是:') print (y)

输出结果为:

我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]] 这个数组的四个角元素是:
[[ 0 2]
[ 9 11]]

返回的结果是包含每个角元素的 ndarray 对象。

可以借助切片 : 或 … 与索引数组组合。如下面例子:

实例

import numpy as np a = np.array([[1,2,3], [4,5,6],[7,8,9]]) b = a[1:3, 1:3] c = a[1:3,[1,2]] d = a[...,1:] print(b) print(c) print(d)

输出结果为:

[[5 6]
[8 9]]
[[5 6]
[8 9]]
[[2 3]
[5 6]
[8 9]]

布尔索引

我们可以通过一个布尔数组来索引目标数组。

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

以下实例获取大于 5 的元素:

实例

import numpy as np x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) print ('我们的数组是:') print (x) print ('\n') # 现在我们会打印出大于 5 的元素 print ('大于 5 的元素是:') print (x[x > 5])

输出结果为:

我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]] 大于 5 的元素是:
[ 6 7 8 9 10 11]

以下实例使用了 ~(取补运算符)来过滤 NaN。

实例

import numpy as np a = np.array([np.nan, 1,2,np.nan,3,4,5]) print (a[~np.isnan(a)])

输出结果为:

[ 1.   2.   3.   4.   5.]

以下实例演示如何从数组中过滤掉非复数元素。

实例

import numpy as np a = np.array([1, 2+6j, 5, 3.5+5j]) print (a[np.iscomplex(a)])

输出如下:

[2.0+6.j  3.5+5.j]

花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素;如果目标是二维数组,那么就是对应下标的行。

花式索引跟切片不一样,它总是将数据复制到新数组中。

1、传入顺序索引数组

实例

import numpy as np x=np.arange(32).reshape((8,4)) print (x[[4,2,1,7]])

输出结果为:

[[16 17 18 19]
[ 8 9 10 11]
[ 4 5 6 7]
[28 29 30 31]]

2、传入倒序索引数组

实例

import numpy as np x=np.arange(32).reshape((8,4)) print (x[[-4,-2,-1,-7]])

输出结果为:

[[16 17 18 19]
[24 25 26 27]
[28 29 30 31]
[ 4 5 6 7]]

3、传入多个索引数组(要使用np.ix_)

实例

import numpy as np x=np.arange(32).reshape((8,4)) print (x[np.ix_([1,5,7,2],[0,3,1,2])])

输出结果为:

[[ 4  7  5  6]
[20 23 21 22]
[28 31 29 30]
[ 8 11 9 10]]

NumPy 高级索引的更多相关文章

  1. 6、numpy——高级索引

    NumPy 比一般的 Python 序列提供更多的索引方式.除了之前看到的用整数和切片的索引外,数组可以由整数数组索引.布尔索引及花式索引. 1.整数数组索引 1.1 以下实例获取数组中(0,0),( ...

  2. numpy高级索引

    布尔值索引 name_arr = np.array(["bob","joe","will","bob","jo ...

  3. 吴裕雄--天生自然Numpy库学习笔记:NumPy 高级索引

    import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y) import n ...

  4. Numpy ndarray 的高级索引存在 "bug" ?

    Numpy ndarray 高级索引 "bug" ? 话说一天,搞事情,代码如下 import numpy as np tmp = [1, 2, 3, 4] * 2 a, b = ...

  5. numpy广播机制,取特定行、特定列的元素 的高级索引取法

    numpy广播机制,取特定行.特定列的元素 的高级索引取法 enter description here enter description here

  6. numpy高级函数:where与extract

    numpy高级函数:where与extract 1.numpy.where()函数,此函数返回数组中满足某个条件的元素的索引: import numpy as np x = np.array([[1, ...

  7. NumPy学习(索引和切片,合并,分割,copy与deep copy)

    NumPy学习(索引和切片,合并,分割,copy与deep copy) 目录 索引和切片 合并 分割 copy与deep copy 索引和切片 通过索引和切片可以访问以及修改数组元素的值 一维数组 程 ...

  8. numpy - 数组索引

    numpy 数组索引 一.单个元素索引 一维数组索引 >>> x = np.arange(10) >>> x[2] 2 >>> x[-2] 8 二 ...

  9. Numpy | 09 高级索引

    NumPy 比一般的 Python 序列提供更多的索引方式.除了之前看到的用整数和切片的索引外,数组可以由整数数组索引.布尔索引及花式索引. 整数数组索引 实例1:获取数组中(0,0),(1,1)和( ...

随机推荐

  1. JMeter之Ramp-up Period(in seconds)说明

    Ramp-up Period(in seconds) [1]决定多长时间启动所有线程.如果使用10个线程,ramp-up period是100秒,那么JMeter用100秒使所有10个线程启动并运行. ...

  2. 关于spire wb.SaveToPdf(f_pdf) excell 转为pdf 乱码问题

    excell 可以合并单元格,但是在单元格内容不要用 alt+enter换行,否则就会出现乱码.

  3. TypeError: 'range' object doesn't support item deletion

    python 是个逐步迭代开发的过程,他不是向下兼容的,更不是向上兼容,版本不一致,好端端的程序就是不能运行了. 下面是在python 2中能运行,在Python 3中不能运行的代码.其实也很简单.但 ...

  4. 彻底关闭Windows Defender丨Win10

    关闭Windows Defender Win10正式版怎么关闭windows defender 首先关闭windows defender,因重启电脑后win10 会自动重启defender,所以需要禁 ...

  5. django--用户认证组件

    用户认证组件 用户认证组件: 功能:用session记录登录验证状态 前提:用户表:django自带的auth_user 创建超级用户: python3 manage.py createsuperus ...

  6. Django 数据库的迁移

    先数据库迁移的两大命令: python manage.py makemigrations & python manage.py migrate 前者是将model层转为迁移文件migratio ...

  7. CAS无锁技术

    前言:关于同步,很多人都知道synchronized,Reentrantlock等加锁技术,这种方式也很好理解,是在线程访问的临界区资源上建立一个阻塞机制,需要线程等待 其它线程释放了锁,它才能运行. ...

  8. Haskell语言学习笔记(89)Unicode UTF8

    unicode-show $ cabal install unicode-show Installed unicode-show-0.1.0.2 Prelude> :m +Text.Show.U ...

  9. centos 下修改mysql 默认字符集

    解决办法: CentOS 7下修改MySQL数据库字符编码为UTF-8,UTF-8包含全世界所有国家需要用到的字符,是国际编码. 具体操作: 1.进入MySQL控制台 mysql  -u root - ...

  10. 如何创建Servlet

    //Servlet的生命周期:从Servlet被创建到Servlet被销毁的过程 //一次创建,到处服务 //一个Servlet只会有一个对象,服务所有的请求 /* * 1.实例化(使用构造方法创建对 ...