Everyone knows that STM32F1xx, STM32F2xx, STM32F4xx have a hardware unit

with a polynomial CRC32 0x04C11DB7.

And he, in general, work.

But only a checksum for some reason does not coincide with that calculated softvarno.

The Google usually 2 types of questions:

  1. As hardvarnogo count on STM32 Byte CRC
  2. How to calculate the soft-CRC so that it coincided with hardovoy for STM32

Moreover, the answer to the first question is negative everywhere.

Is it so? Try to understand.

Software CRC32 generally considered byte by byte, and (as in Ethernet)

- LSB forward shift LSFR

- right in the direction of the least significant bit,

so use a polynomial The reversed 0xEDB88320.

Data register in the CRC block STM32 - 32-bit

and shifts to MSB with a polynomial CRC32 0x04C11DB7

unsigned long CrcSTM32( unsigned long Crc, unsigned long Data )
{
int i; Crc = Crc ^ Data; for ( i = ; i < ; i++ )
if ( Crc & 0x80000000 )
Crc = ( Crc << ) ^ 0x04C11DB7; // Polynomial used in STM32
else
Crc = ( Crc << ); return ( Crc );
}

To understand why so little illustration:

  • Firstly, CRC - bitwise function. Parallel counting CRC - buns consequence of binary mathematics polynomials.
  • boot order bit in LSFR should not be broken, depending on the bit depth and acuity of architecture

Look at the picture:

all the bits arrive in the order flowers I marked the bits that correspond to each other for direct

and mirror polynomials numbering byte coincides with a shift in the memory.

Ie, CRC32 on STM32 can count as well as customary in ethernet.

For this purpose it is necessary to reverse the input speech

and eventually reverse the checksum.

It works only for the length of a multiple of 4.

First Software implementation.

Initialize table residues for rapid calculation of CRC:

static uint32_t crc32_table[  ];
static uint32_t crc32r_table[ ]; #define CRC32_POLY 0x04C11DB7
#define CRC32_POLY_R 0xEDB88320 static void crc32_init( void )
{
int i, j;
uint32_t c, cr;
for ( i = ; i < ; ++i )
{
cr = i;
c = i << ;
for ( j = ; j > ; --j )
{
c = c & 0x80000000 ? ( c << ) ^ CRC32_POLY : ( c << );
cr = cr & 0x00000001 ? ( cr >> ) ^ CRC32_POLY_R : ( cr >> );
}
crc32_table[ i ] = c;
crc32r_table[ i ] = cr;
//printf("f[%02X]=%08X\t", i, crc32_table[i]);
//printf("r[%02X]=%08X\t", i, crc32r_table[i]);
}
//printf("\n");
}
const uint32_t crc32_table[  ] =
{ 0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B,
0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61,
0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD, 0x4C11DB70, 0x48D0C6C7,
0x4593E01E, 0x4152FDA9, 0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75,
0x6A1936C8, 0x6ED82B7F, 0x639B0DA6, 0x675A1011, 0x791D4014, 0x7DDC5DA3,
0x709F7B7A, 0x745E66CD, 0x9823B6E0, 0x9CE2AB57, 0x91A18D8E, 0x95609039,
0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6E5, 0xBE2B5B58, 0xBAEA46EF,
0xB7A96036, 0xB3687D81, 0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, 0xA06C0B5D,
0xD4326D90, 0xD0F37027, 0xDDB056FE, 0xD9714B49, 0xC7361B4C, 0xC3F706FB,
0xCEB42022, 0xCA753D95, 0xF23A8028, 0xF6FB9D9F, 0xFBB8BB46, 0xFF79A6F1,
0xE13EF6F4, 0xE5FFEB43, 0xE8BCCD9A, 0xEC7DD02D, 0x34867077, 0x30476DC0,
0x3D044B19, 0x39C556AE, 0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072,
0x128E9DCF, 0x164F8078, 0x1B0CA6A1, 0x1FCDBB16, 0x018AEB13, 0x054BF6A4,
0x0808D07D, 0x0CC9CDCA, 0x7897AB07, 0x7C56B6B0, 0x71159069, 0x75D48DDE,
0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02, 0x5E9F46BF, 0x5A5E5B08,
0x571D7DD1, 0x53DC6066, 0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA,
0xACA5C697, 0xA864DB20, 0xA527FDF9, 0xA1E6E04E, 0xBFA1B04B, 0xBB60ADFC,
0xB6238B25, 0xB2E29692, 0x8AAD2B2F, 0x8E6C3698, 0x832F1041, 0x87EE0DF6,
0x99A95DF3, 0x9D684044, 0x902B669D, 0x94EA7B2A, 0xE0B41DE7, 0xE4750050,
0xE9362689, 0xEDF73B3E, 0xF3B06B3B, 0xF771768C, 0xFA325055, 0xFEF34DE2,
0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686, 0xD5B88683, 0xD1799B34,
0xDC3ABDED, 0xD8FBA05A, 0x690CE0EE, 0x6DCDFD59, 0x608EDB80, 0x644FC637,
0x7A089632, 0x7EC98B85, 0x738AAD5C, 0x774BB0EB, 0x4F040D56, 0x4BC510E1,
0x46863638, 0x42472B8F, 0x5C007B8A, 0x58C1663D, 0x558240E4, 0x51435D53,
0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47, 0x36194D42, 0x32D850F5,
0x3F9B762C, 0x3B5A6B9B, 0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF,
0x1011A0FA, 0x14D0BD4D, 0x19939B94, 0x1D528623, 0xF12F560E, 0xF5EE4BB9,
0xF8AD6D60, 0xFC6C70D7, 0xE22B20D2, 0xE6EA3D65, 0xEBA91BBC, 0xEF68060B,
0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F, 0xC423CD6A, 0xC0E2D0DD,
0xCDA1F604, 0xC960EBB3, 0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xB07DABA7,
0xAE3AFBA2, 0xAAFBE615, 0xA7B8C0CC, 0xA379DD7B, 0x9B3660C6, 0x9FF77D71,
0x92B45BA8, 0x9675461F, 0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3,
0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640, 0x4E8EE645, 0x4A4FFBF2,
0x470CDD2B, 0x43CDC09C, 0x7B827D21, 0x7F436096, 0x7200464F, 0x76C15BF8,
0x68860BFD, 0x6C47164A, 0x61043093, 0x65C52D24, 0x119B4BE9, 0x155A565E,
0x18197087, 0x1CD86D30, 0x029F3D35, 0x065E2082, 0x0B1D065B, 0x0FDC1BEC,
0x3793A651, 0x3352BBE6, 0x3E119D3F, 0x3AD08088, 0x2497D08D, 0x2056CD3A,
0x2D15EBE3, 0x29D4F654, 0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EA00A0,
0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C, 0xE3A1CBC1, 0xE760D676,
0xEA23F0AF, 0xEEE2ED18, 0xF0A5BD1D, 0xF464A0AA, 0xF9278673, 0xFDE69BC4,
0x89B8FD09, 0x8D79E0BE, 0x803AC667, 0x84FBDBD0, 0x9ABC8BD5, 0x9E7D9662,
0x933EB0BB, 0x97FFAD0C, 0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668,
0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4 }; const uint32_t crc32r_table[ ] =
{ 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F,
0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2,
0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423,
0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106,
0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7,
0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA,
0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84,
0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E,
0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55,
0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28,
0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F,
0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69,
0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693,
0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D, };

Byte calculation of the normal CRC

uint32_t crc32_byte( uint32_t init_crc, uint8_t *buf, int len )
{
uint32_t v;
uint32_t crc;
crc = ~init_crc;
while ( len > )
{
v = *buf++;
crc = ( crc >> ) ^ crc32r_table[ ( crc ^ ( v ) ) & 0xff ];
len--;
}
return ~crc;
}

Calculating the CRC on CRC block STM32

uint32_t crc32_stm32( uint32_t init_crc, uint32_t *buf, int len )
{
uint32_t v;
uint32_t crc;
crc = ~init_crc;
while ( len >= )
{
v = htonl( *buf++ );
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v ) ) ];
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v >> ) ) ];
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v >> ) ) ];
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v >> ) ) ];
len -= ;
}
if ( len )
{
switch ( len )
{
case :
v = 0xFF000000 & htonl( *buf++ );
break;
case :
v = 0xFFFF0000 & htonl( *buf++ );
break;
case :
v = 0xFFFFFF00 & htonl( *buf++ );
break;
}
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v ) ) ];
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v >> ) ) ];
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v >> ) ) ];
crc = ( crc << ) ^ crc32_table[ 0xFF & ( ( crc >> ) ^ ( v >> ) ) ];
}
return ~crc;
}

Then I applied to htonl bytes in the word are in a certain order, regardless of LE / BE:

first in LSFR dressed byte that is in memory at offset 3 (as shown).

Still, the rest of the message does not fit into a 4-byte word is padded with zeros on the right and CRC doschitvaetsya further.

You can write this type of structure (to calculate the CRC pieces):

printf("crc32_byte   = %08X\n", crc32_byte(crc32_byte(, "", ), "", ));
printf("crc32_stm32 = %08X\n", crc32_stm32(crc32_stm32(, "", ), "", ));

Here's what happens: 
crc32_byte («123456789») = CBF43926 
crc32_stm32 («123456789») = 500E6FA8 
crc32_byte («12345678») = 9AE0DAAF 
crc32_stm32 («12345678») = 0103AB06

Now the code for STM32:

First, purely hardware configurations CRC (it corresponds Softovaya crc32_stm32):

uint32_t crc32_native( char *bfr, int len, int clear )
{
int l;
uint32_t *p, x, crc;
l = len / ;
p = (uint32_t*) bfr;
x = p[ l ];
if ( clear )
CRC_ResetDR( );
while ( l-- )
{
crc = CRC_CalcCRC( *p++ );
}
switch ( len & )
{
case :
crc = CRC_CalcCRC( x & 0x000000FF );
break;
case :
crc = CRC_CalcCRC( x & 0x0000FFFF );
break;
case :
crc = CRC_CalcCRC( x & 0x00FFFFFF );
break;
}
return 0xFFFFFFFF ^ crc;
}

Then do a "soft on" or "in ethernet».

Fortunately, there are on the ARM instruction for reversing bits.

But that's not all.

After all, if poraskinut brains, you can add a delicious bun - still count Byte CRC hardware unit.

You just need to calculate the polynomial, the remainder of the broken pieces

and add it to the already counted by word CRC.

Balance - is essentially the same CRC, but with the initial state LSFR = 0 (see table initialization residues).

But here's the rub - CRC_ResetDR can set CRC register only 0xFFFFFFFF.

Thank balls that we should just 0 rather than something else.

One of the properties of the CRC is that if a message attributed to its CRC, the CRC of the new posts will be equal to 0.

In other words, if we will submit to the CRC register what we thought of it, the result will be 0.

CRC_ResetDR( );
CRC_CalcCRC( 0xFFFFFFFF );

Now we have to fill register a piece of one, two or three remaining bytes -

et voila, we take away our polynomial-residue and add it to the CRC.

The following code:

uint32_t reverse_32( uint32_t data )
{
asm("rbit r0,r0");
return data;
}
; uint32_t crc32_ether( char *buf, int len, int clear )
{
uint32_t *p = (uint32_t*) buf;
uint32_t crc, crc_reg;
if ( clear )
CRC_ResetDR( );
while ( len >= )
{
crc_reg = CRC_CalcCRC( reverse_32( *p++ ) );
len -= ;
}
crc = reverse_32( crc_reg );
if ( len )
{
CRC_CalcCRC( crc_reg );
switch ( len )
{
case :
crc_reg = CRC_CalcCRC( reverse_32( ( *p & 0xFF ) ^ crc ) >> );
crc = ( crc >> ) ^ reverse_32( crc_reg );
break;
case :
crc_reg = CRC_CalcCRC( reverse_32( ( *p & 0xFFFF ) ^ crc ) >> );
crc = ( crc >> ) ^ reverse_32( crc_reg );
break;
case :
crc_reg = CRC_CalcCRC( reverse_32( ( *p & 0xFFFFFF ) ^ crc ) >> );
crc = ( crc >> ) ^ reverse_32( crc_reg );
break;
}
}
return ~crc;
}

That is, something like that, I think many will come in handy.

uint8_t pkt_alt[ ] =
{ 0x00, 0x10, 0xA4, 0x7B, 0xEA, 0x80, 0x00, 0x12, 0x34, 0x56, 0x78, 0x90, 0x08,
0x00, 0x45, 0x00, 0x00, 0x2E, 0xB3, 0xFE, 0x00, 0x00, 0x80, 0x11, 0x05, 0x40,
0xC0, 0xA8, 0x00, 0x2C, 0xC0, 0xA8, 0x00, 0x04, 0x04, 0x00, 0x04, 0x00, 0x00,
0x1A, 0x2D, 0xE8, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0xB3, 0x31, 0x88, 0x1B }; uint8_t pkt_alt_d[ ] =
{ 0x00, 0xC0, 0x02, 0x37, 0x57, 0x28, 0x00, 0x10, 0xA4, 0x7B, 0xEA, 0x80, 0x08,
0x00, 0x45, 0x00, 0x00, 0x3C, 0x02, 0x24, 0x00, 0x00, 0x80, 0x01, 0xB7, 0x47,
0xC0, 0xA8, 0x00, 0x04, 0xC0, 0xA8, 0x00, 0x01, 0x08, 0x00, 0x42, 0x5C, 0x02,
0x00, 0x09, 0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A,
0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x62, 0x31, 0xC5, 0x4E }; uint8_t pkt_xil[ ] =
{ 0x00, 0x0A, 0xE6, 0xF0, 0x05, 0xA3, 0x00, 0x12, 0x34, 0x56, 0x78, 0x90, 0x08,
0x00, 0x45, 0x00, 0x00, 0x30, 0xB3, 0xFE, 0x00, 0x00, 0x80, 0x11, 0x72, 0xBA,
0x0A, 0x00, 0x00, 0x03, 0x0A, 0x00, 0x00, 0x02, 0x04, 0x00, 0x04, 0x00, 0x00,
0x1C, 0x89, 0x4D, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x7A, 0xD5, 0x6B,
0xB3 };

so if anyone should, real ethernet-frames with CRC32 FCS

public class CRC32
{
static UInt32[] Crc32Table = new UInt32[]
{
0x00000000,0x04C11DB7,0x09823B6E,0x0D4326D9,
0x130476DC,0x17C56B6B,0x1A864DB2,0x1E475005,
0x2608EDB8,0x22C9F00F,0x2F8AD6D6,0x2B4BCB61,
0x350C9B64,0x31CD86D3,0x3C8EA00A,0x384FBDBD
}; static UInt32 DR;
public static void Reset()
{
DR = 0xFFFFFFFF;
} public static void Write(UInt32 data)
{
DR = DR ^ data;
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
DR = (DR << ) ^ Crc32Table[DR >> ];
}
public static UInt32 Read()
{
return DR;
}
}

The CRC processes 32-bits at a time, applying them in a small-endian fashion.

It is not performed byte wise in the manner most online testers use.

It can be computed on the STM32 or x86 PC with the following code.

The nibble table method is a trade off between speed and space

DWORD Crc32( DWORD Crc, DWORD Data )
{
int i; Crc = Crc ^ Data; for ( i = ; i < ; i++ )
{
if ( Crc & 0x80000000 )
Crc = ( Crc << ) ^ 0x04C11DB7; // Polynomial used in STM32
else
Crc = ( Crc << );
} return ( Crc );
} DWORD Crc32Fast( DWORD Crc, DWORD Data )
{
// Nibble lookup table for 0x04C11DB7 polynomial
static const DWORD CrcTable[ ] =
{ 0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B,
0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61,
0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD }; Crc = Crc ^ Data; // Apply all 32-bits // Process 32-bits, 4 at a time, or 8 rounds
// Assumes 32-bit reg, masking index to 4-bits
// 0x04C11DB7 Polynomial used in STM32
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; return ( Crc );
} void Crc32Demo( void )
{
printf( "%08X\n\n", Crc32( 0xFFFFFFFF, 0x12345678 ) ); // 0xDF8A8A2B
printf( "%08X\n\n", Crc32Fast( 0xFFFFFFFF, 0x12345678 ) ); // 0xDF8A8A2B
}

CRC's by their nature are sensitive to bit and sequence errors, if you screw up the math you're going to get the wrong numbers.

The polynomial, endian-ness, and 32-bit data width of the STM32 are difficult for some people to get their heads around,

especially if they rely on web sources for their testing and knowledge

// STM32 CRC32 Test App - sourcer32@gmail.com

#include <windows.h>
#include <stdio.h> DWORD Crc32( DWORD Crc, DWORD Data )
{
int i; Crc = Crc ^ Data; for ( i = ; i < ; i++ )
if ( Crc & 0x80000000 )
Crc = ( Crc << ) ^ 0x04C11DB7; // Polynomial used in STM32
else
Crc = ( Crc << ); return ( Crc );
} DWORD Crc32Fast( DWORD Crc, DWORD Data )
{
static const DWORD CrcTable[ ] =
{ // Nibble lookup table for 0x04C11DB7 polynomial
0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B,
0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61,
0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD }; Crc = Crc ^ Data; // Apply all 32-bits // Process 32-bits, 4 at a time, or 8 rounds Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; // Assumes 32-bit reg, masking index to 4-bits
Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; // 0x04C11DB7 Polynomial used in STM32
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; return ( Crc );
} void test( void )
{
BYTE vector[ ] =
{ 0x02, 0x07, 0x02, 0x00, 0x18, 0x8A, 0xD0, 0x23, 0x25, 0x2B, 0x09, 0x00 };
DWORD Crc;
int i; for ( i = ; i < ; i++ )
printf( "%02X ", vector[ i ] ); putchar( '\n' ); Crc = 0xFFFFFFFF; // Initial state
for ( i = ; i < ; i += )
{
Crc = Crc32Fast( Crc, *( (DWORD *) &vector[ i ] ) ); // 4-bytes at a time
} printf( "%08X test\n", Crc );
} int main( int argc, char **argv )
{
printf( "%08X\n\n", Crc32( 0xFFFFFFFF, 0x12345678 ) ); // 0xDF8A8A2B
printf( "%08X\n\n", Crc32Fast( 0xFFFFFFFF, 0x12345678 ) ); // 0xDF8A8A2B
test( );
return ( );
}
// STM32 CRC32 Test App - sourcer32@gmail.com

#include <windows.h>

#include <stdio.h>
#include <stdlib.h> //**************************************************************************** DWORD Crc32( DWORD Crc, DWORD Data )
{
int i; Crc = Crc ^ Data; for ( i = ; i < ; i++ )
if ( Crc & 0x80000000 )
Crc = ( Crc << ) ^ 0x04C11DB7; // Polynomial used in STM32
else
Crc = ( Crc << ); return ( Crc );
} //**************************************************************************** DWORD Crc32Block( DWORD Crc, DWORD Size, DWORD *Buffer ) // 32-bit units
{
while ( Size-- )
Crc = Crc32( Crc, *Buffer++ ); return ( Crc );
} //**************************************************************************** DWORD Crc32Fast( DWORD Crc, DWORD Data )
{
static const DWORD CrcTable[ ] =
{ // Nibble lookup table for 0x04C11DB7 polynomial
0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B,
0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61,
0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD }; Crc = Crc ^ Data; // Apply all 32-bits // Process 32-bits, 4 at a time, or 8 rounds Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; // Assumes 32-bit reg, masking index to 4-bits
Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; // 0x04C11DB7 Polynomial used in STM32
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ];
Crc = ( Crc << ) ^ CrcTable[ Crc >> ]; return ( Crc );
} //**************************************************************************** DWORD Crc32FastBlock( DWORD Crc, DWORD Size, DWORD *Buffer ) // 32-bit units
{
while ( Size-- )
Crc = Crc32Fast( Crc, *Buffer++ ); return ( Crc );
} //**************************************************************************** void test( void )
{
BYTE vector[ ] =
{ 0x02, 0x07, 0x02, 0x00, 0x18, 0x8A, 0xD0, 0x23, 0x25, 0x2B, 0x09, 0x00 }; // ACD7E298
DWORD Crc;
int i; for ( i = ; i < sizeof( vector ); i++ )
printf( "%02X ", vector[ i ] ); putchar( '\n' ); Crc = 0xFFFFFFFF; // Initial state for ( i = ; i < sizeof( vector ); i += )
{
Crc = Crc32Fast( Crc, *( (DWORD *) &vector[ i ] ) ); // 4-bytes at a time
} printf( "%08X %08X test\n", Crc,
Crc32FastBlock( 0xFFFFFFFF, sizeof( vector ) / , (void *) vector ) );
} //**************************************************************************** void TestFile( char *Filename )
{
FILE *f;
DWORD Size;
BYTE *Buffer; f = fopen( Filename, "rb" ); if ( f )
{
fseek( f, , SEEK_END ); Size = ftell( f ); fseek( f, , SEEK_SET ); if ( Size & )
printf(
"WARNING: File must be multiple of 4 bytes (32-bit) for valid results\n" ); Buffer = malloc( Size ); fread( Buffer, Size, , f ); fclose( f ); printf( "crc=%08X Slow\n",
Crc32Block( 0xFFFFFFFF, Size >> , (void *) Buffer ) ); printf( "crc=%08X Fast\n",
Crc32FastBlock( 0xFFFFFFFF, Size >> , (void *) Buffer ) ); free( Buffer );
}
else
printf( "ERROR: Unable to open file '%s'\n", Filename );
} //**************************************************************************** int main( int argc, char **argv )
{
printf( "STM32CRC Test\n\nUsage: STM32CRC [<file>]\n\n" ); if ( ( Crc32( 0xFFFFFFFF, 0x12345678 ) != 0xDF8A8A2B )
|| ( Crc32Fast( 0xFFFFFFFF, 0x12345678 ) != 0xDF8A8A2B ) )
{
printf( "ERROR: Internal Sanity Check Failed\n" );
} if ( argc > )
TestFile( argv[ ] );
else
test( ); return ( );
}

Now I could probably reimplement with a table driven varient but this should prove the concept

u32 revbit( u32 data )
{
asm("rbit r0,r0");
return data;
}
; u32 CalcCRC32( u8 *buffer, u32 size )
{
u32 i, j;
u32 ui32;
RCC_AHBPeriphClockCmd( RCC_AHBPeriph_CRC, ENABLE ); CRC->CR = ; asm("NOP");
asm("NOP");
asm("NOP");
//delay for hardware ready i = size >> ; while ( i-- )
{
ui32 = *( (u32 *) buffer ); buffer += ; ui32 = revbit( ui32 ); //reverse the bit order of input data CRC->DR = ui32;
} ui32 = CRC->DR; ui32 = revbit( ui32 ); //reverse the bit order of output data i = size & ; while ( i-- )
{
ui32 ^= (u32) *buffer++; for ( j = ; j < ; j++ )
if ( ui32 & )
ui32 = ( ui32 >> ) ^ 0xEDB88320;
else
ui32 >>= ;
} ui32 ^= 0xffffffff; //xor with 0xffffffff return ui32; //now the output is compatible with windows/winzip/winrar
}

Fully hardware method:

uint32_t reverse_32( uint32_t data )
{
asm("rbit r0,r0");
return data;
}
; uint32_t crc32_ether( char *buf, int len, int clear )
{
uint32_t *p = (uint32_t*) buf;
uint32_t crc, crc_reg;
if ( clear )
CRC_ResetDR( );
while ( len >= )
{
crc_reg = CRC_CalcCRC( reverse_32( *p++ ) );
len -= ;
}
crc = reverse_32( crc_reg );
if ( len )
{
CRC_CalcCRC( crc_reg );
switch ( len )
{
case :
crc_reg = CRC_CalcCRC( reverse_32( ( *p & 0xFF ) ^ crc ) >> );
crc = ( crc >> ) ^ reverse_32( crc_reg );
break;
case :
crc_reg = CRC_CalcCRC( reverse_32( ( *p & 0xFFFF ) ^ crc ) >> );
crc = ( crc >> ) ^ reverse_32( crc_reg );
break;
case :
crc_reg = CRC_CalcCRC( reverse_32( ( *p & 0xFFFFFF ) ^ crc ) >> );
crc = ( crc >> ) ^ reverse_32( crc_reg );
break;
}
}
return ~crc;
}

CRC32 of Ether FCS with STM32的更多相关文章

  1. STM32的CRC32 实现代码 -- Ether

    uint32_t reverse_32( uint32_t data ) { asm("rbit r0,r0"); return data; } ; uint32_t crc32_ ...

  2. STM32的CRC32 测试代码

    // STM32 CRC32 Test App - sourcer32@gmail.com #include <windows.h> #include <stdio.h> DW ...

  3. Calculate CRC32 as in STM32 hardware (EWARM v.5.50 and later)

    http://supp.iar.com/Support/?note=64424&from=note+11927 BackgroundThe STM32 devices from ST Micr ...

  4. STM32的CRC32 软件实现代码

    对于STM32的32位CRC,如果假定它的一个主要目的是为了校验往内部FLASH存储数据的可靠性,那么(余数)初值是全1当然是比较合理的.由于STM32的32位CRC是纯32位,即每次必须输入32位的 ...

  5. STM32 CRC32与对应的软件CRC32(转)

    源:STM32 CRC32与对应的软件CRC32 简单实现STM32 CRC32使用 使用前记得使能STM32 CRC时钟 //STM32硬件CRC32 byte数据计算,将数据移到最高位,低位补上F ...

  6. [技术栈]CRC校验原理及C#代码实现CRC16、CRC32计算FCS校验码

    1.CRC.FCS是什么 CRC,全称Cyclic Redundancy Check,中文名称为循环冗余校验,是一种根据网络数据包或计算机文件等数据产生简短固定位数校验码的一种信道编码技术,主要用来检 ...

  7. STM32 CRC-32 Calculator Unit

    AN4187 - Using the CRC peripheral in the STM32 family At start up, the algorithm sets CRC to the Ini ...

  8. 数据帧CRC32校验算法实现

    本文设计思想采用明德扬至简设计法.由于本人项目需要进行光纤数据传输,为了保证通信质量要对数据进行校验.在校验算法中,最简单最成熟的非CRC校验莫属了. 得出一个数的CRC校验码还是比较简单的: 选定一 ...

  9. CRC32是什么?

    CRC32:CRC本身是“冗余校验码”的意思,CRC32则表示会产生一个32bit(8位十六进制数)的校验值.由于CRC32产生校验值时源数据块的每一个bit(位)都参与了计算,所以数据块中即使只有一 ...

随机推荐

  1. 工作目录与os.getcwd()

    假设某程序在/root/a/aa.py,在shell,当前pwd为/root,输入./a/aa.py运行py程序,则爱程序的工作目录是/root.而不是程序所在文件夹,os.getcwd()就是查看工 ...

  2. mybatis一对多关联查询——(九)

    1.需求: 查询所有订单信息及订单下的订单明细信息. 订单信息与订单明细为一对多关系. 2.      sql语句 确定主查询表:订单表 确定关联查询表:订单明细表 在一对一查询基础上添加订单明细表关 ...

  3. linux修改文件打开最大数(ulimit命令)

    解除 Linux 系统的最大进程数和最大文件打开数限制:vi /etc/security/limits.conf# 添加如下的行* soft noproc 65536 * hard noproc 65 ...

  4. sort命令的k选项大讨论【转】

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket. 为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. ...

  5. springcloud注解@EnableDiscoveryClient与@EnableEurekaC

    spring cloud中discovery service有许多种实现(eureka.consul.zookeeper等等),@EnableDiscoveryClient基于spring-cloud ...

  6. File /data/binlog/mysql-bin.index' not found (Errcode: 13)

    [问题] 需要开启bin-log备份/恢复数据库,但是因为本身bin-log保存的位置存储太小,并且归类性也不好,所以自己新创建了/data/binlog来保存二进制日志 在/etc/my.cnf增加 ...

  7. 浅谈js设计模式之代理模式

    代理模式是一种非常有意义的模式,在生活中可以找到很多代理模式的场景.比如,明星都有经纪人作为代理.如果想请明星来办一场商业演出,只能联系他的经纪人.经纪人会把商业演出的细节和报酬都谈好之后,再把合同交 ...

  8. knnMatch

    先马克下,回头再看:http://blog.csdn.net/zkl99999/article/details/47950425 http://blog.csdn.net/yangtrees/arti ...

  9. .NetCore Cap 注册 Consul 服务发现

    注册服务发现 需要使用Cap中的UseDiscovery方法 具体用法如下 var capConsulConfig = Configuration.GetSection("CapConsul ...

  10. 【Codechef】BB-Billboards

    题解 传说中的--半标准杨表(行单调不增,列单调减) 如果N能整除M,我们把序列分成\(\frac{N}{M}\)段 然后里面要填K个1,显然我每一段必须填K个1,且可以构造出合法的序列,所以最少要填 ...