HS BDC

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 748    Accepted Submission(s): 290

Problem Description
IELTS is around the corner! love8909 has registered for the exam, but he still hasn’t got prepared. Now he decides to take actions. But when he takes out the New Oriental IELTS Vocabulary, he finds there are so many words. But love8909 doesn’t get scared, because he has got a special skill. If he can make a list with some meaningful words, he will quickly remember these words and will not forget them. If the last letter of some word Wa is the same as the first letter of some word Wb, then you can connect these two words and make a list of two words. If you can connect a word to a list, you will make a longer list.

While love8909 is making the list, he finds that some words are still meaningful words if you reverse them. For example, if you reverse the word “pat”, you will get another meaningful word “tap”.

After scanning the vocabulary, love8909 has found there are N words, some of them are meaningful if reversed, while others are not. Now he wonders whether he can remember all these words using his special skill.

The N-word list must contain every word once and only once.

 
Input
An integer T (T <= 50) comes on the first line, indicating the number of test cases.

On the first line of each test cases is an integer N (N <= 1000), telling you that there are N words that love8909 wants to remember. Then comes N lines. Each of the following N lines has this format: word type. Word will be a string with only ‘a’~’z’, and type will be 0(not meaningful when reversed) or 1(meaningful when reversed). The length of each word is guaranteed to be less than 20.

 
Output
The format of the output is like “Case t: s”, t is the number of the test cases, starting from 1, and s is a string.
For each test case, if love8909 can remember all the words, s will be “Well done!”, otherwise it’s “Poor boy!”

 
Sample Input
3
6
aloha 0
arachnid 0
dog 0
gopher 0
tar 1
tiger 0
3
thee 1
earn 0
nothing 0
2
pat 1
acm 0
 
Sample Output
Case 1: Well done!
Case 2: Well done!
Case 3: Poor boy!

Hint

In the first case, the word “tar” is still meaningful when reversed, and love8909 can make a list as “aloha-arachnid-dog-gopher-rat-tiger”.
In the second case, the word “thee” is still meaningful when reversed, and love8909 can make a list as “thee-earn-nothing”. In the third case,
no lists can be created.

 
Author
allenlowesy
 
Source
 
 
 
 

几乎就是模板题了。

先要判断连通。

然后转化成网络流判断欧拉回路。

 /* ***********************************************
Author :kuangbin
Created Time :2014-2-3 15:00:40
File Name :E:\2014ACM\专题学习\图论\欧拉路\混合图\HDU3472.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; const int MAXN = ;
//最大流部分
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,next,cap,flow;
}edge[MAXM];
int tol;
int head[MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN];
void init()
{
tol = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,int w,int rw = )
{
edge[tol].to = v;
edge[tol].cap = w;
edge[tol].next = head[u];
edge[tol].flow = ;
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = rw;
edge[tol].next = head[v];
edge[tol].flow = ;
head[v] = tol++;
}
int sap(int start,int end,int N)
{
memset(gap,,sizeof(gap));
memset(dep,,sizeof(dep));
memcpy(cur,head,sizeof(head));
int u = start;
pre[u] = -;
gap[] = N;
int ans = ;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF;
for(int i = pre[u];i != -;i = pre[edge[i^].to])
if(Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
for(int i = pre[u]; i != -;i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
}
u = start;
ans += Min;
continue;
}
bool flag = false;
int v;
for(int i = cur[u]; i != -;i = edge[i].next)
{
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v] + == dep[u])
{
flag = true;
cur[u] = pre[v] = i;
break;
}
}
if(flag)
{
u = v;
continue;
} int Min = N;
for(int i = head[u]; i != -;i = edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]] --;
if(!gap[dep[u]])return ans;
dep[u] = Min+;
gap[dep[u]]++;
if(u != start) u = edge[pre[u]^].to;
}
return ans;
} int in[],out[];
int F[];
int find(int x)
{
if(F[x] == -)return x;
else return F[x] = find(F[x]);
}
void bing(int u,int v)
{
int t1 = find(u), t2 = find(v);
if(t1 != t2)F[t1] = t2;
}
char str[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T,n;
scanf("%d",&T);
int iCase = ;
while(T--)
{
iCase++;
scanf("%d",&n);
memset(F,-,sizeof(F));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
init();
int k;
int s = -;
while(n--)
{
scanf("%s%d",str,&k);
int len = strlen(str);
int u = str[] - 'a';
int v = str[len-] - 'a';
out[u]++;
in[v]++;
s = u;
if(k == )
addedge(u,v,);
bing(u,v);
}
bool flag = true;
int cnt = ;
int s1 = -, s2 = -;
for(int i = ;i < ;i++)
if(in[i] || out[i])
{
if(find(i) != find(s))
{
flag = false;
break;
}
if((in[i] + out[i])&)
{
cnt++;
if(s1 == -)s1 = i;
else s2 = i;
}
}
if(cnt != && cnt != )flag = false;
if(!flag)
{
printf("Case %d: Poor boy!\n",iCase);
continue;
}
if(cnt == )
{
out[s1]++;
in[s2]++;
addedge(s1,s2,);
}
for(int i = ;i < ;i++)
{
if(out[i] - in[i] > )
addedge(,i,(out[i] - in[i])/);
else if(in[i] - out[i] > )
addedge(i,,(in[i] - out[i])/);
}
sap(,,);
for(int i = head[];i != -;i = edge[i].next)
if(edge[i].cap > && edge[i].cap > edge[i].flow)
{
flag = false;
break;
}
if(flag)printf("Case %d: Well done!\n",iCase);
else printf("Case %d: Poor boy!\n",iCase);
}
return ;
}

HDU 3472 HS BDC (混合图的欧拉路径判断)的更多相关文章

  1. hdu 3472 HS BDC(混合路的欧拉路径)

    这题是混合路的欧拉路径问题. 1.判断图的连通性,若不连通,无解. 2.给无向边任意定向,计算每个结点入度和出度之差deg[i].deg[i]为奇数的结点个数只能是0个或2个,否则肯定无解. 3.(若 ...

  2. hdu 4738 Caocao's Bridges 图--桥的判断模板

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 3472 混合图欧拉回路 + 网络流

    九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/13799337 题意: T个测试数据 n串字符 能否倒过来用(1表示能倒着用) 问 ...

  4. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  5. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  6. UVa 10735 (混合图的欧拉回路) Euler Circuit

    题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...

  7. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  8. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  9. Sightseeing tour 【混合图欧拉回路】

    题目链接:http://poj.org/problem?id=1637 Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total ...

随机推荐

  1. Linux - awk 文本处理工具三

    AWK 文件打印匹配 格式示例 awk '/Tom/' file # 打印匹配到得行 awk '/^Tom/{print $1}' # 匹配Tom开头的行 打印第一个字段 awk '$1 !~ /ly ...

  2. 开放通用Api,总有你喜欢的

    接口文档 目录 通用 更新记录 接口列表 一.福彩-双色球接口 指定期号中奖号码 最新中奖号码信息 获取双色球中奖信息列表 二.节假日及万年历 指定日期的节假日及万年历信息 指定多个日期的节假日及万年 ...

  3. js基础知识:闭包,事件处理,原型

    闭包:其实就是js代码在执行的时候会创建变量对象的一个作用域链,标识符解析的时候会沿着作用域链一级一级的网上搜索,最后到达全局变量停止.所以某个函数可以访问外层的局部变量和全局变量,但是访问不了里层的 ...

  4. MacOS 下提示APP 损坏 无法安装 解决方法

    sudo spctl --master-disable

  5. linux命令中which、whereis、locate有什么区别?

    1.find find是最常用和最强大的查找命令.它能做到实时查找,精确查找,但速度慢. find的使用格式如下: #find [指定目录] [指定条件] [指定动作] 指定目录:是指所要搜索的目录和 ...

  6. Nuts & Bolts Problem

    Given a set of n nuts of different sizes and n bolts of different sizes. There is a one-one mapping ...

  7. 交换机NTP的MD5配置

    1.ntp-service authentication enable  开启NTP身份验证功能 2.ntp-service source-interfer LoopBack0 指定本机发生NTP的端 ...

  8. Mybatis 接口传入多个参数 xml怎么接收

    mybatis 在接口上传入多个参数 1.如果传入的参数类型一样. Map<String, String> queryDkpayBindBankCidByOriBindAndBankCid ...

  9. 2018-2019-2 网络对抗技术 20165301 Exp3 免杀原理与实践

    2018-2019-2 网络对抗技术 20165301 Exp3 免杀原理与实践 实验内容 任务一:正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用 ...

  10. CentOS 7命令行安装图形界面(GNOME、KDE等)

    CentOS 7 默认是没有图形化界面的,但我们很多人在习惯了 Windows 的图形化界面之后,总是希望有一个图形化界面从而方便我们使用,这里介绍一下 CentOS7安装图形化桌面系统的方法. 一. ...