本文主要介绍了如何使用TensorFlow环境运行一个最基本的图像分类器(Win10系统)。源码地址https://github.com/sourcedexter/tfClassifier/tree/master/image_classification

(这个大神好像改名了,原来叫akshaypai来着)

一.基础概念介绍

1.物体分类的思想

物体分类,也就是训练系统识别各个物体,如猫咪、狗狗、汽车等。TensorFlow是谷歌开发出的人工智能学习系统,相当于我们的运行环境。

2.神经网络与Inception v3体系结构模型

神经网络示意图如下:

通俗了讲,就是将若干个输入,进行若干次操作(线性或者非线性),最后输出结果。Inception v3模型是谷歌发布的一个深层卷积网络模型。我们使用的retrain_new.py脚本就是使用了Inception v3模型进行一个迁移学习。

3.训练集、测试集和验证集

训练集用来训练模型,验证集用来验证模型是否进行了过拟合,测试集用来测试模型的准确程度。三种图片集的比例会对准确度产生影响。

4.学习速率

不同的学习速率会导致不同的结果。如果速率过大,会导致准确率在训练的过程中不断上下跳动,如果速率过小会导致在训练结束前无法到达预期准确度。

二.环境搭建

1.Python环境搭建

具体的python搭建细节可以自行百度。参考链接:

https://blog.csdn.net/lyj_viviani/article/details/51763101

这里要注意一下版本,因为要对应后文的cuDnn库与cuda的版本。(我用的是python 3.6.4)

2.TensorFlow环境搭建(gpu)

(1)直接pip安装。命令:

pip install tensorflow-gpu

这样就安装好TensorFlow了,但是我们还需要GPU加速,所以还需要安装cuda和cuDnn(专门为deep learning准备的加速库)。

(2)cuda安装

cuda v8.0安装包下载:https://developer.nvidia.com/cuda-downloads

进行如下选择:

下载完后正常安装就可以了。

(3)cuDnn库下载

下载链接:https://developer.nvidia.com/rdp/cudnn-archive

我下载的是这个版本(cuDNN v7.0.5),这个版本要对应好cuda的版本。

下载完后解压缩,出现如下文件夹结构:

然后将这三个文件夹下的文件分别拷贝到cuda对应的文件夹下面就行了。

到这里还不能完整的运行,还需要配置一下环境变量:cuda安装完成后默认的环境变量配置不对,CUDA_PATH是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0,但是这样不能直接访问到bin和lib\x64下的程序包,在path中加上这两个路径即可。

(4)测试

用如下代码测试:

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()

三.基本使用

1.数据集的收集与创建

我用的是2018全球AI挑战赛的数据集。链接:

https://challenger.ai/datasets/lad2018

下载完后,将所有文件夹都放在一个文件夹下(我自己创建了一个叫DataSet),结构如下:

文件夹的名字就是最后输出的分类的结果。
每一个文件夹下都是图片(不能再有子文件夹),即:

2.训练模型

训练模型使用retrain_new.py脚本。在命令行运行,命令格式如下:

python retrain_new.py --model_dir 存放classify_image_graph_def.pb的路径 --image_dir 刚才的创建的DataSet的路径 --output_graph 产生的,pb文件的存放路径 --output_labels 产生的output_labels.txt的 存放路径 --how_many_training_steps 训练步数 --learning_rate 学习速率 --testing_percentage 测试集比例 --validation_percentage 验证集比例

示例命令:

python retrain_new.py --model_dir E:\tfclassifier\image_classification\inception --image_dir E:\tfclassifier\DataSet --output_graph E:\tfclassifier\image_classification\output_dir\output_graph.pb  --output_labels E:\tfclassifier\image_classification\output_dir\output_labels.txt --how_many_training_steps 500 --learning_rate 0.3 --testing_percentage 10 --validation_percentage 10

说明:

model_dir参数:指定了model的存放位置,就是我们的inception文件夹

image_dir参数:指定了数据集的位置

output_graph参数:产生的output_graph.pb文件的存放路径(后面要用)

output_labels 参数:产生的output_labels.txt的存放路径(后面要用)

how_many_training_steps参数:训练步数,和学习速率配合调整(我用的500)

learning_rate参数:学习速率,和训练步数配合调整(我用的0.3,常用的有0.001,0.01,0.1,0.3,1,3,可自己调整尝试一下)

testing_percentage参数:测试集比例

validation_percentage参数:验证集比例

注意:训练会在根目录下生成一个tmp文件夹,存放相关文件,即:

3.测试模型

核心的文件是output_graph.pb文件(我们训练所产生的图,是一个二进制文件)和output_labels.txt文件。

使用retrain_model_classifier.py脚本来测试模型。命令格式如下:

E:

cd E:\tfclassifier\image_classification(进入retrain_model_classifier.py脚本所在的目录)

python retrain_model_classifier.py 要识别图片的路径

例如:

python retrain_model_classifier.py D:\test2\testPic.jpg

然后会看到一些版本信息,和输出结果(红框部分):

四.遇到的问题以及解答

1.版本对应问题

Python版本,cuda版本和cuDNN版本都是对应的,如果结果中出现了乱码,很大概率是版本的问题。

2.带参数的python脚本编写与运行

想让python脚本带参数,可以在python脚本的末尾添加如下格式的代码:

运行时需要在python xxx.py后加上“--image_dir 参数”就可以了。

3.测试脚本的调整

要不断训练、测试,不断调整参数,直到训练快要结束的时候,验证比例达到稳定,并且在90以上,我们才认为系统较为完善。

五.参考链接:

深度学习动手入门:GitHub上四个超棒的TensorFlow开源项目

http://www.techweb.com.cn/news/2017-07-31/2566452.shtml

Win10 TensorFlow(gpu)安装详解

https://blog.csdn.net/sb19931201/article/details/53648615

用Inception-V3模型进行图像分类

https://blog.csdn.net/xingwei_09/article/details/79152796

谷歌机器学习速成课程

https://developers.google.cn/machine-learning/crash-course/prereqs-and-prework

TensorFlow图像识别(物体分类)入门教程的更多相关文章

  1. TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】

    本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...

  2. Tensorflow 2.x入门教程

    前言 至于为什么写这个教程,首先是为了自己学习做个记录,其次是因为Tensorflow的API写的很好,但是他的教程写的太乱了,不适合新手学习.tensorflow 1 和tensorflow 2 有 ...

  3. TensorFlow 中文资源全集,官方网站,安装教程,入门教程,实战项目,学习路径。

    Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...

  4. TensorFlow 中文资源精选,官方网站,安装教程,入门教程,实战项目,学习路径。

    Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...

  5. 【OpenCV入门教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑

    http://blog.csdn.net/poem_qianmo/article/details/26977557 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

  6. GAN网络之入门教程(四)之基于DCGAN动漫头像生成

    目录 使用前准备 数据集 定义参数 构建网络 构建G网络 构建D网络 构建GAN网络 关于GAN的小trick 训练 总结 参考 这一篇博客以代码为主,主要是来介绍如果使用keras构建一个DCGAN ...

  7. caffe_实战之两个简单的例子(物体分类和人脸检测)

    一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplot ...

  8. WebGL入门教程(五)-webgl纹理

    前面文章: WebGL入门教程(一)-初识webgl WebGL入门教程(二)-webgl绘制三角形 WebGL入门教程(三)-webgl动画 WebGL入门教程(四)-webgl颜色 这里就需要用到 ...

  9. Objective-C 30分钟入门教程

    Objective-C 30分钟入门教程 我第一次看OC觉得这个语言的语法有些怪异,为什么充满了@符号,[]符号,函数调用没有()这个,但是面向对象的高级语言也不外乎类,接口,多态,封装,继承等概念. ...

随机推荐

  1. 解压版中文乱码问题MYSQL中文乱码

    安装的是解压版的MYSQL,具体配置参考:https://jingyan.baidu.com/article/9c69d48f85032f13c9024e15.html . 1:解压之后copy 一个 ...

  2. leetcode650—2 Keys Keyboard

    Initially on a notepad only one character 'A' is present. You can perform two operations on this not ...

  3. python 爬虫--同花顺-使用代理

    1.http://www.goubanjia.com/  在上面获取 使用http协议的公网IP和端口 参考:https://blog.csdn.net/qq_23934063/article/det ...

  4. iscsi target IET架构

    IET(iSCSI Enterprise Target)是内核态实现的iscsi target,相比于用户态实现的target(比如tgt),iet比较稳定,并且也算是历史悠久,io都直接经过内核态, ...

  5. 20155234《网路对抗》Exp9 WEB安全基础

    20155234 Exp9 Web安全基础 基础问答 SQL注入攻击原理,如何防御? SQL注入攻击就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意 ...

  6. 20155308《网络对抗》Exp8 Web基础

    20155308<网络对抗>Exp8 Web基础 实践原理与实践说明 本实践的具体要求有: (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与P ...

  7. 实践:IIS7下访问ashx页面,显示404

    问题描述 1.路径什么的都对,这方面的原因就不要想了 2.在我的电脑上可以,在同事的电脑上不可以 方案1:未注册ashx的处理应用程序 也就是不知道IIS不知道用什么应用程序处理ashx文件,解决办法 ...

  8. mfc CListBox

    通过ID操作对象 CListBox(列表框)控件 CListBox类常用成员 CListBox插入数据 CListBox删除数据 CListBox运用示例 一.CListBox类常用成员 CListB ...

  9. HashMap 源码解析(一)之使用、构造以及计算容量

    目录 简介 集合和映射 HashMap 特点 使用 构造 相关属性 构造方法 tableSizeFor 函数 一般的算法(效率低, 不值得借鉴) tableSizeFor 函数算法 效率比较 tabl ...

  10. html元素双击事件触发机制猜想及疑惑

    今天有个同事遇到一个奇怪的问题,我照着他的代码做了一些简化写了这个demo <!DOCTYPE html> <html> <head> <style type ...