题目描述

假设有 \(n\) 根柱子,现要按下述规则在这 \(n\) 根柱子中依次放入编号为 \(1, 2, 3, 4, \cdots\) 的球。

  1. 每次只能在某根柱子的最上面放球。

  2. 在同一根柱子中,任何 \(2\) 个相邻球的编号之和为完全平方数。

试设计一个算法,计算出在 \(n\) 根柱子上最多能放多少个球。

输入格式

文件第 \(1\) 行有 \(1\) 个正整数 \(n\),表示柱子数。

输出格式

第一行是球数。接下来的 \(n\) 行,每行是一根柱子上的球的编号。

样例

样例输入

4

样例输出

11
1 8
2 7 9
3 6 10
4 5 11

数据范围与提示

\(1 \leq n \leq 55\)

题解

枚举答案

对于一个新的数字,它可以新出一根柱子,即直接与源点相连,容量为 \(1\) ;还可以接在别的数字的后面,即与满足条件的其它数字连边

当最大流超过 \(n\) ,就说明需要的柱子超过 \(n\) 了,枚举的数字的上一个就是答案

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=4100+10,MAXM=300000+10,inf=0x3f3f3f3f;
int n,ans,e=1,beg[MAXN],nex[MAXM],to[MAXM],cap[MAXM],out[MAXM],pt[MAXN],level[MAXN],cur[MAXN],vis[MAXN],clk,s,t,res;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline bool check(int x)
{
int qt=std::sqrt(x);
return qt*qt==x;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
out[e]=x;
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
out[e]=y;
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline void dfs(int x)
{
if(!x)return ;
vis[x]=1;
write(x,' ');
dfs(pt[x]);
}
int main()
{
read(n);
s=3999,t=4000;
for(register int i=1;;++i)
{
insert(s,i,1);insert(i+1600,t,1);
for(register int j=1;j<i;++j)
if(check(i+j))insert(j,i+1600,1);
if(i-Dinic()>n)
{
ans=i-1;
break;
}
}
write(ans,'\n');
for(register int i=2;i<=e;i+=2)
if(!cap[i]&&out[i]!=s&&to[i]!=t)pt[out[i]]=to[i]-1600;
for(register int i=1;i<=ans;++i)
if(!vis[i])dfs(i),puts("");
return 0;
}

【刷题】LOJ 6003 「网络流 24 题」魔术球的更多相关文章

  1. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  2. 2018.10.14 loj#6003. 「网络流 24 题」魔术球(最大流)

    传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1​和i2i_2i2​,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1​),(i2​, ...

  3. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  4. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  5. Libre 6003 「网络流 24 题」魔术球 (网络流,最大流)

    Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只 ...

  6. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  7. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  8. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  9. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

随机推荐

  1. FakeID签名漏洞分析及利用(二)

    本文转自:http://blog.csdn.net/l173864930/article/details/38409521 继上一次Masterkey漏洞之后,Bluebox在2014年7月30日又公 ...

  2. 20155308『网络对抗技术』Exp7:网络欺诈防范

    20155308『网络对抗技术』Exp7:网络欺诈防范 原理与实践说明 1.实践目标 本实践的目标是:理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. 2.实践内容概述 简单应用SET ...

  3. 20155310 Exp9 Web安全基础实践

    20155310 Exp9 Web安全基础实践 基础问题 SQL注入攻击原理,如何防御? SQL注入漏洞是指在Web应用对后台数据库查询语句处理存在的安全漏洞.也就是,在输入字符串中嵌入SQL指令,在 ...

  4. 20155318 《网络攻防》 Exp9 Web基础

    20155318 <网络攻防> Exp9 Web基础 基础问题 SQL注入攻击原理,如何防御 就是通过把SQL命令插入到"Web表单递交"或"输入域名&quo ...

  5. Struts2将图片输出到页面

            在做CRUD的过程中,添加页面是个表单,表单里面有一项是上传头像文件.这样表单提交后,头像文件上传了. 但这个文件存的地址是本地硬盘的一个文件夹.在编辑页面要做这个头像的回显的话,就需 ...

  6. Dynamics 365 支持使用Web Api 通过名称来检索元数据

    关键检索元数据我在之前的一篇博文中稍有提及,当时是为了取实体的picklist字段的属性,但当时的版本只支持通过metadataid检索,而在365中又增加了名称的检索,方便了很多. 本篇依旧用之前博 ...

  7. CodeForces 1073F Choosing Two Paths

    Description You are given an undirected unweighted tree consisting of \(n\) vertices. An undirected ...

  8. python3获取主机名、主机IP

    python3可以通过socket模块获取主机名及主机IP 代码如下: *********************************************************** 学习永远 ...

  9. Wannafly挑战赛26-F-msc的棋盘[最小割转化dp]

    题意 一个大小为 \(n*m\) 的棋盘,知道每一列放了多少棋子,求有多少摆放方案满足要求. \(n,m\leq 50\) . 分析 如果是求是否有方案的话可以考虑网络流,行列连边,列容量为 \(b_ ...

  10. 软件工程第二次作业(One who wants to wear the crown, Bears the crown.)

    小镓自述Eclipse使用及自动单元测试技术 因为本人对JAVA有一些兴趣,所以就决定用Eclipse来完成这次作业,从安装Eclipse到学习写代码,最后学会用Junit来进行单元测试.这段过程给我 ...