A guess

题意

选一个\([1,n](n\le 500)\)的整数,可以询问数是否属于区间\([l,r]\),多次询问一起回答,统计有多少种询问区间集合(无序)满足可以猜出这个数,对\(p(2^{29}\le p<2^{30})\)取模


中文题解看不懂,看了一下午英文题解,还是感觉理解的不好,就按照现在的理解说一下吧(为啥这题是今天最简单的啊...

首先你写暴力的话有个结论

每个权值\(i\)都有过询问区间集合\(S_i\),\(S_i\)代表覆盖整个值的询问集合。如果有某两个值的询问集合是一样的,那么就猜不出来,否则一定可以猜出来。

考虑按照这个把每个权值编号\(a_i\),以最小表示法来编号,要求是若\(S_i=S_j\),那么有\(a_i=a_j\)

不必在乎这个怎么编号的,反正一定可以编出来,可以发现\(\{S\}\)对\(\{a\}\)是一个单射,于是我们转过去统计\(\{a\}\)的数量。

按照要求我们可以统计存在\(a_i=a_j\)的集合的数量,就是补集的数量。

如果对于一个集合,有一个\(a_i=a_j\),那么我们可以把\([i,j]\)区间内的给拿开统计,等价于把这个区间缩成一个点,点的权值为\(a_i\),把所有类似这样的区间都拿开的话,剩下的集合是没有重复元素的,也就是我们最终需要求得的答案,记为\(f_i\)

注意理解一下为什么缩掉区间构成的子问题是相同的。

然后我们需要得到把一个原来长度为\(L\)的问题缩到\(K\)的方案数,设为\(g_{L,K}\)

不妨先把有关\(f\)的转移写出来

\[f_i=2^{\binom{i+1}{2}}-\sum_{j=1}^{i-1}f_jg_{i,j}
\]

即全集减去所有可以缩掉的方案(可缩的话一定不合法)

然后再考虑如何计算\(g\)

按照一些常见组合意义的东西的递推的方法,我们应该枚举最后一个一个集合大小。

首先不产生一个新的可缩的即\(g_{i-1,j-1}\)对\(g_{i,j}\)的贡献

然后枚举产生的缩掉的区间的大小\(k\),在这个区间里的询问集合是随意的,即为全集

那么转移就为

\[g_{i,j}=g_{i-1,j-1}+\sum_{k=0}g_{i-k-2,j-1}2^{\binom{k+1}{2}}
\]

嗯,感觉还是没理解到本质的东西...

如果非要写一些思路的话

把拥有集合的性质通过编号转换到元素统计上去,这点和后缀自动机状态的构建好像有些相似,后缀自动机定义了每个子串的endpos集合,然后按照每个子串集合划分状态,进行统计。这种方法应该可以成为一种思路吧,这个题大概就是通过最小表示法编号。

然后我们统计数量时,真正涉及计算的时候要回到集合的意义上才能统计,比如这个题就是回到了区间内的集合是全集,才能统计的数量,也只有在这个地方可以简单的进行统计和计算了。


Code:

#include <cstdio>
const int N=510;
int n,mod,po[N*N],g[N][N],f[N],d[N];
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*a*b%mod)
int main()
{
scanf("%d%d",&n,&mod);
po[0]=1;for(int i=1;i<=n*n;i++) po[i]=mul(po[i-1],2);
for(int i=1;i<=n;i++) d[i]=i*(i+1)/2;
g[0][0]=1;
for(register int i=1;i<=n;i++)
for(register int j=1;j<=i;j++)
{
g[i][j]=g[i-1][j-1];
for(register int k=0;k<=i-2;k++)
g[i][j]=add(g[i][j],mul(g[i-k-2][j-1],po[d[k]]));
}
for(register int i=1;i<=n;i++)
{
f[i]=po[d[i]];
for(register int j=1;j<i;j++)
f[i]=add(f[i],mod-mul(f[j],g[i][j]));
}
printf("%d\n",f[n]);
return 0;
}

2019.1.8

A guess 解题报告的更多相关文章

  1. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  2. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  5. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

  6. 习题: codevs 2492 上帝造题的七分钟2 解题报告

    这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...

  7. 习题:codevs 1519 过路费 解题报告

    今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...

  8. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

  9. LeetCode 解题报告索引

    最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中......                        ...

  10. ACM: Just a Hook 解题报告 -线段树

    E - Just a Hook Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   D ...

随机推荐

  1. Linux线程的信号量同步

    信号量和互斥锁(mutex)的区别:互斥锁只允许一个线程进入临界区,而信号量允许多个线程同时进入临界区. 不多做解释,要使用信号量同步,需要包含头文件semaphore.h. 主要用到的函数: int ...

  2. 使用clipboard插件实现div、textarea、input里面的内容复制到粘贴板

    一.引用clipboard的js文件 二.编写代码.data-clipboard-action=“copy”,代表要执行的动作是复制.data-clipboard-target里面要是要选择复制的元素 ...

  3. 20155216 Exp8 WEB基础实践

    Exp8 WEB基础实践 实践内容 Apache环境配置 apache是kali下的web服务器,通过访问 ip地址+端口号+文件名称 打开对应的网页. 输入命令 vi /etc/apache2/po ...

  4. 20155308《网络攻防》 Exp1 PC平台逆向破解(5)M

    20155308<网络攻防> Exp1 PC平台逆向破解(5)M 逆向及Bof基础实践说明 1.1 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是 ...

  5. [agc011C]Squared Graph-[二分图]

    Description 传送门 Solution 我们以下考虑的情况都是原图中非孤立的点. 题目要求新图的连通块个数.这个不好算,我们考虑计算新图的联通块内的特征点(x,y),即无法通过移动找到(t, ...

  6. AT24C02跨页写数据

    AT24C02 EEPROM的写数据分为:字节写数据模式和页写数据模式:字节写就是一个地址一个数据的写,页写是连续写数据,一个地址多个数据的写,但是页写不能自动跨页,如果超出一页长度,超出的数据会覆盖 ...

  7. JS设置状态栏

    JS设置状态栏可通过window.status = str来设置,在后台可通过 ClientScript.RegisterStartupScript( this.GetType(), "12 ...

  8. Java虚拟机笔记(五):JVM中对象的分代

    为什么要分代 为什么需要把堆分代?不分代不能完成他所做的事情么?其实不分代完全可以,分代的唯一理由就是优化GC性能.你先想想,如果没有分代,那我们所有的对象都在一块,GC的时候我们要找到哪些对象没用, ...

  9. 算法练习-002-返回一个set数组

    题目描述: 写一个函数,它的作用是接受一个整数(假设为num),返回一个数组,数组的长度为num, 数组中的内容为随机的0至(num-1)的值,并且不能重复.比如num为5的话,数组可能是[1,0,3 ...

  10. 使用C#创建WCF服务控制台应用程序

    本文属于原创,转载请注明出处,谢谢! 一.开发环境 操作系统:Windows 10 开发环境:VS2015 编程语言:C# IIS版本:10.0.0.0 二.添加WCF服务.Internet Info ...