Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵
E. Sasha and Array
题目连接:
http://codeforces.com/contest/719/problem/E
Description
Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:
1 l r x — increase all integers on the segment from l to r by values x;
2 l r — find , where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo 109 + 7.
In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.
Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?
Input
The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.
It's guaranteed that the input will contains at least one query of the second type.
Output
For each query of the second type print the answer modulo 109 + 7.
Sample Input
5 4
1 1 2 1 1
2 1 5
1 2 4 2
2 2 4
2 1 5
Sample Output
5
7
9
Hint
题意
给你n个数,两个操作,1是区间增加x,2是查询区间fib(a[i])的和
题解:
回忆一下你怎么做矩阵快速幂fib的,就知道这个更新,其实就是多乘上了一个A^x矩阵。
A = 【0,1;0,0;】这个玩意儿。
然后就可以区间更新呢。
CF官方题解下面有个评论说的很清楚,大家可以看一下。
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int maxn = 1e5+5;
struct node
{
long long a[2][2];
void reset()
{
memset(a,0,sizeof(a));
}
void one()
{
reset();
a[0][0]=a[1][1]=1;
}
};
node add(node A,node B)
{
node k;k.reset();
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
k.a[i][j]=(A.a[i][j]+B.a[i][j])%mod;
return k;
}
node mul(node A,node B)
{
node k;memset(k.a,0,sizeof(k.a));
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int t=0;t<2;t++)
k.a[i][j]=(k.a[i][j]+A.a[i][t]*B.a[t][j])%mod;
return k;
}
node qpow(int p)
{
node A;
A.a[0][0]=0,A.a[1][0]=1,A.a[0][1]=1,A.a[1][1]=1;
node K;
K.one();
while(p)
{
if(p%2)K=mul(K,A);
A=mul(A,A);p/=2;
}
return K;
}
typedef node SgTreeDataType;
struct treenode
{
int L , R , flag;
SgTreeDataType sum , lazy;
void update(SgTreeDataType v)
{
sum=mul(sum,v);
lazy=mul(lazy,v);
flag=1;
}
};
treenode tree[maxn*4];
int a[maxn];
inline void push_down(int o)
{
if(tree[o].flag)
{
tree[2*o].update(tree[o].lazy) ; tree[2*o+1].update(tree[o].lazy);
tree[o].flag = 0;tree[o].lazy.one();
}
}
inline void push_up(int o)
{
tree[o].sum = add(tree[o*2].sum,tree[o*2+1].sum);
}
node tmp;
inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum.reset(),tree[o].lazy.one(),tree[o].flag=0;
if(L==R)
{
tree[o].sum=qpow(a[L]);
}
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
push_up(o);
}
}
inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
}
inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res;res.reset();
if (QL <= mid) res=add(res,query(QL,QR,2*o));
if (QR > mid) res=add(res,query(QL,QR,2*o+1));
push_up(o);
return res;
}
}
int n,q;
int main()
{
tmp.a[0][0]=0,tmp.a[1][0]=1,tmp.a[0][1]=1,tmp.a[1][1]=1;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
build_tree(1,n,1);
for(int i=1;i<=q;i++)
{
int op;scanf("%d",&op);
if(op==2){
int a,b;scanf("%d%d",&a,&b);
printf("%lld\n",query(a,b,1).a[1][0]);
}
else{
int a,b,c;scanf("%d%d%d",&a,&b,&c);
update(a,b,qpow(c),1);
}
}
return 0;
}
Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵的更多相关文章
- Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树
E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- CF719E. Sasha and Array [线段树维护矩阵]
CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+ ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array
题目链接 分析:矩阵快速幂+线段树 斐波那契数列的计算是矩阵快速幂的模板题,这个也没什么很多好解释的,学了矩阵快速幂应该就知道的东西= =这道题比较巧妙的在于需要用线段树来维护矩阵,达到快速查询区间斐 ...
- Codeforces Round #374 (Div. 2) D. Maxim and Array 线段树+贪心
D. Maxim and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #312 (Div. 2) E. A Simple Task 线段树
E. A Simple Task 题目连接: http://www.codeforces.com/contest/558/problem/E Description This task is very ...
- Codeforces Round #590 (Div. 3) D. Distinct Characters Queries(线段树, 位运算)
链接: https://codeforces.com/contest/1234/problem/D 题意: You are given a string s consisting of lowerca ...
- Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树
C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...
- Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树
题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...
随机推荐
- dp的进阶 (一)
熟练掌握dp的定义方法. ①四维dp的转移,生命值转移时候需要注意的 ②集合的定义,判断二进制内部是否有环 ③很难想到的背包问题 ④博弈类型的dp ⑤排列组合类型dp ⑥01背包的变种(01背包+完全 ...
- Java SSM框架之MyBatis3(二)MyBatis之Mapper代理的开发方式
Mapper代理的开发规范 1. mapper接口的全限定名要和mapper映射文件的namespace值一致. 2. mapper接口的方法名称要和mapper映射文件的statement的id一致 ...
- AngularJs -- 模 块
在JavaScript中,将函数代码全部定义在全局命名空间中绝对不是什么好主意,这样做会导致冲突从而是调试变得非常困难,浪费宝贵的时间. 上一章介绍数据绑定时,就是写在全局命名空间中定义的函数. 在A ...
- 20155210潘滢昊 2016-2017-2 《Java程序设计》第6周学习总结
20155210 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 流(Stream)是对「输入输出」的抽象,注意「输入输出」是相对程序而言的 InputStr ...
- Servlet笔记11--补充
Servlet线程安全问题: 代码示例: package com.bjpowernode.javaweb.servlet; import java.io.IOException; import jav ...
- 【API】文件操作编程基础-CreateFile、WriteFile、SetFilePointer
1.说明 很多黑客工具的实现是通过对文件进行读写操作的,而文件读写操作实质也是对API函数的调用. 2.相关函数 CreateFile : 创建或打开文件或I/O设备.最常用的I/O设备如下:文件,文 ...
- 【转】SpringMVC Controller 介绍
转自:原文url 一.简介 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理层处理之后封装成一个Model ...
- usb的一些网址
一些关于usb的帖子.网址: usb gadget device g_ether.ko 做成usbnetwork http://bbs.csdn.net/topics/370120345 Linux ...
- LINUX下 USB转串口 【转】
转自:http://blog.163.com/smilexiao_11015461/blog/static/2122052182012102410399459/ 1.将设备u口插入pc2.输入#lsm ...
- springmvc接收jquery提交的数组数据
var selectedUsers = $('#users').tagbox('getValues'); if (selectedUsers.length > 0) { $.post(appPa ...