[转]KMP算法
KMP算法应该是每一本《数据结构》书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年压根就没看懂过~~~
之后也在很多地方也都经常看到讲解KMP算法的文章,看久了好像也知道是怎么一回事,但总感觉有些地方自己还是没有完全懂明白。这两天花了点时间总结一下,有点小体会,我希望可以通过我自己的语言来把这个算法的一些细节梳理清楚,也算是考验一下自己有真正理解这个算法。
什么是KMP算法:
KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!
KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。
首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?
我们可以这样初始化:
之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致。如果一致就都向后移动,如果不一致,如下图:
A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤:
基于这个想法我们可以得到以下的程序:
1 /**
2
3 * 暴力破解法
4
5 * @param ts 主串
6
7 * @param ps 模式串
8
9 * @return 如果找到,返回在主串中第一个字符出现的下标,否则为-1
10
11 */
12
13 public static int bf(String ts, String ps) {
14
15 char[] t = ts.toCharArray();
16
17 char[] p = ps.toCharArray();
18
19 int i = 0; // 主串的位置
20
21 int j = 0; // 模式串的位置
22
23 while (i < t.length && j < p.length) {
24
25 if (t[i] == p[j]) { // 当两个字符相同,就比较下一个
26
27 i++;
28
29 j++;
30
31 } else {
32
33 i = i - j + 1; // 一旦不匹配,i后退
34
35 j = 0; // j归0
36
37 }
38
39 }
40
41 if (j == p.length) {
42
43 return i - j;
44
45 } else {
46
47 return -1;
48
49 }
50
51 }
上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)
如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道主串前面只有一个A?因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可,如下图:
上面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。
大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”
所以,整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪?
接下来我们自己来发现j的移动规律:
如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:
如下图也是一样的情况:
可以把j指针移动到第2位,因为前面有两个字母是一样的:
至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的。
如果用数学公式来表示是这样的
P[0 ~ k-1] == P[j-k ~ j-1]
这个相当重要,如果觉得不好记的话,可以通过下图来理解:
弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。
因为:
当T[i] != P[j]时
有T[i-j ~ i-1] == P[0 ~ j-1]
由P[0 ~ k-1] == P[j-k ~ j-1]
必然:T[i-k ~ i-1] == P[0 ~ k-1]
公式很无聊,能看明白就行了,不需要记住。
这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。
好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。
很多教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为什么是这样求?怎么可以这样求?根本就没有说清楚。而这里恰恰是整个算法最关键的地方。
1 public static int[] getNext(String ps) {
2
3 char[] p = ps.toCharArray();
4
5 int[] next = new int[p.length];
6
7 next[0] = -1;
8
9 int j = 0;
10
11 int k = -1;
12
13 while (j < p.length - 1) {
14
15 if (k == -1 || p[j] == p[k]) {
16
17 next[++j] = ++k;
18
19 } else {
20
21 k = next[k];
22
23 }
24
25 }
26
27 return next;
28
29 }
这个版本的求next数组的算法应该是流传最广泛的,代码是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?
好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置。
先来看第一个:当j为0时,如果这时候不匹配,怎么办?
像上图这种情况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。
如果是当j为1的时候呢?
显然,j指针一定是后移到0位置的。因为它前面也就只有这一个位置了~~~
下面这个是最重要的,请看如下图:
请仔细对比这两个图。
我们发现一个规律:
当P[k] == P[j]时,
有next[j+1] == next[j] + 1
其实这个是可以证明的:
因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)
这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。
即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。
这里的公式不是很好懂,还是看图会容易理解些。
那如果P[k] != P[j]呢?比如下图所示:
像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。
现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。
有了next数组之后就一切好办了,我们可以动手写KMP算法了:
1 public static int KMP(String ts, String ps) {
2
3 char[] t = ts.toCharArray();
4
5 char[] p = ps.toCharArray();
6
7 int i = 0; // 主串的位置
8
9 int j = 0; // 模式串的位置
10
11 int[] next = getNext(ps);
12
13 while (i < t.length && j < p.length) {
14
15 if (j == -1 || t[i] == p[j]) { // 当j为-1时,要移动的是i,当然j也要归0
16
17 i++;
18
19 j++;
20
21 } else {
22
23 // i不需要回溯了
24
25 // i = i - j + 1;
26
27 j = next[j]; // j回到指定位置
28
29 }
30
31 }
32
33 if (j == p.length) {
34
35 return i - j;
36
37 } else {
38
39 return -1;
40
41 }
42
43 }
和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不需要回溯了。
最后,来看一下上边的算法存在的缺陷。来看第一个例子:
显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]
所以下一步我们应该是把j移动到第1个元素咯:
不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了,那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。
显然,发生问题的原因在于P[j] == P[next[j]]。
所以我们也只需要添加一个判断条件即可:
public static int[] getNext(String ps) { char[] p = ps.toCharArray(); int[] next = new int[p.length]; next[0] = -1; int j = 0; int k = -1; while (j < p.length - 1) { if (k == -1 || p[j] == p[k]) { if (p[++j] == p[++k]) { // 当两个字符相等时要跳过 next[j] = next[k]; } else { next[j] = k; } } else { k = next[k]; } } return next; }
好了,至此。KMP算法也结束了。
很奇怪,好像不是很难的东西怎么就把我困住这么久呢?
仔细想想还是因为自己太浮躁了,以前总是草草应付,很多细节都没弄清楚,就以为自己懂了。结果就只能是似懂非懂的。要学东西真的需要静下心来。
————————————————————————————————————————————————————————————————————————————————————————————————
再挂另一个链接
https://blog.csdn.net/starstar1992/article/details/54913261/
[转]KMP算法的更多相关文章
- 简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...
- KMP算法
KMP算法是字符串模式匹配当中最经典的算法,原来大二学数据结构的有讲,但是当时只是记住了原理,但不知道代码实现,今天终于是完成了KMP的代码实现.原理KMP的原理其实很简单,给定一个字符串和一个模式串 ...
- 萌新笔记——用KMP算法与Trie字典树实现屏蔽敏感词(UTF-8编码)
前几天写好了字典,又刚好重温了KMP算法,恰逢遇到朋友吐槽最近被和谐的词越来越多了,于是突发奇想,想要自己实现一下敏感词屏蔽. 基本敏感词的屏蔽说起来很简单,只要把字符串中的敏感词替换成"* ...
- KMP算法实现
链接:http://blog.csdn.net/joylnwang/article/details/6778316 KMP算法是一种很经典的字符串匹配算法,链接中的讲解已经是很明确得了,自己按照其讲解 ...
- 数据结构与算法JavaScript (五) 串(经典KMP算法)
KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配 ...
- 扩展KMP算法
一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...
- 字符串模式匹配之KMP算法图解与 next 数组原理和实现方案
之前说到,朴素的匹配,每趟比较,都要回溯主串的指针,费事.则 KMP 就是对朴素匹配的一种改进.正好复习一下. KMP 算法其改进思想在于: 每当一趟匹配过程中出现字符比较不相等时,不需要回溯主串的 ...
- 算法:KMP算法
算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...
- BF算法与KMP算法
BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...
- KMP算法-next函数求解
KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...
随机推荐
- 3: $.ajax()方法详解
1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: 要求为String类型的参数,请求方式(post或get)默认为get.注意其他http请求方法,例如 ...
- 函数和常用模块【day06】:模块特殊变量(十四)
from test import test ''' __mame__ # 当前文件为主文件是等于__main__.用于调用时不执行一些命令 __file__ # 当前文件的路径,相对路径 __cach ...
- C语言复习---零散补充
一:double和float使用scanf获取数据 printf输出float和double都可以用%f,double还可以用%lf. 2 scanf输入float用%f,double输入用%lf,不 ...
- FastDFS简单入门小demo
图片上传 需要引入 FastDFS 相关的jar包,但是这个jar没有在中央仓库,所以还得需要找到这个jar手动安装到自己的本地仓库才能使用. 需要一个配置文件 fdfs_client.conf ...
- Spark记录-Scala shell命令
1.scala shell命令 scala> :help All commands can be abbreviated, e.g., :he instead of :help. :edit & ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
- js 语法高亮插件之 Prism.js
之前也介绍过几款语法高亮插件<为博客园选择一个小巧霸气的语法高亮插件>以及关于他们的综合性能<再议 语法高亮插件的选择>.今天在小影志博客看到<使用 Prism.js 实 ...
- shell 判断路径
判断路径 ];then echo "找到了123" if [ -d /root/Desktop/text ] then echo "找到了text" else ...
- JavaScript 中创建三种消息框:警告框、确认框、提示框。
网址:http://www.w3school.com.cn/js/js_popup.asp 警告框 警告框经常用于确保用户可以得到某些信息. 当警告框出现后,用户需要点击确定按钮才能继续进行操作. 语 ...
- Python3之外部文件调用Django程序操作model等文件实现
import os import sys import django sys.path.append(r'C:\Users\Administrator\PycharmProjects\your pro ...