POJ3046--Ant Counting(动态规划)
Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.
How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed?
While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were:
3 sets with 1 ant: {1} {2} {3}
5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3}
5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3}
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}
1 set with 5 ants: {1,1,2,2,3}
Your job is to count the number of possible sets of ants given the data above.
Input
* Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive
Output
Sample Input
3 5 2 3
1
2
2
1
3
Sample Output
10
Hint
Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or size 3 can be made?
OUTPUT DETAILS:
5 sets of ants with two members; 5 more sets of ants with three members
#include<iostream>
#include<algorithm>
#include<string.h>
int dp[][];
int num[];
#define MOD 1000000
using namespace std;
int main(){
int t,a,s,b;
cin>>t>>a>>s>>b;
for(int i=;i<=a;i++){
int x;
cin>>x;
num[x]++;
}
dp[][]=;
int total=;
for(int i=;i<=t;i++){
total+=num[i];
memset(dp[i%],,sizeof(dp[i%]));
for(int j=;j<=total;j++){
for(int k=;k<=num[i];k++){
dp[i%][j]=(dp[i%][j]+dp[(i-)%][j-k])% MOD;
}
}
}
int ans=;
for(int i=s;i<=b;i++){
ans=(ans+dp[t%][i])% MOD;
}
cout<<ans<<endl;
return ;
}
POJ3046--Ant Counting(动态规划)的更多相关文章
- [poj3046][Ant counting数蚂蚁]
题目链接 http://noi.openjudge.cn/ch0206/9289/ 描述 Bessie was poking around the ant hill one day watching ...
- poj-3046 Ant Counting【dp】【母函数】
题目链接:戳这里 题意:有A只蚂蚁,来自T个家族,每个家族有ti只蚂蚁.任取n只蚂蚁(S <= n <= B),求能组成几种集合? 这道题可以用dp或母函数求. 多重集组合数也是由多重背包 ...
- [poj3046]Ant Counting(母函数)
题意: S<=x1+x2+...+xT<=B 0<=x1<=N1 0<=x2<=N2 ... 0<=xT<=NT 求这个不等式方程组的解的个数. 分析: ...
- 2019.01.02 poj3046 Ant Counting(生成函数+dp)
传送门 生成函数基础题. 题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量. 直接构造生成函数然后乘起来f(x) ...
- poj3046 Ant Counting——多重集组合数
题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...
- 【POJ - 3046】Ant Counting(多重集组合数)
Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...
- poj 3046 Ant Counting
Ant Counting Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4982 Accepted: 1896 Desc ...
- BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁
2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 56 Solved: 16[S ...
- 1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁
2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 85 Solved: 40[S ...
- poj 3046 Ant Counting(多重集组合数)
Ant Counting Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other) Total ...
随机推荐
- ajax登陆页面
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- hdu (kruska and prime) 继续畅通工程
题目http://acm.hdu.edu.cn/showproblem.php?pid=1879 复习一下最小生成树的两个基本算法. 由于存在道路是否已修建的问题,如果已修建,那么该条道路的成本即为0 ...
- Nginx 如何设置反向代理
网络结构如上图.可能你只有一个公网的Ip地址. 但是您的内网有个网站需要映射至外网.而又不想添加其它的非80端口.则你可以直接使用nginx来做反向代理即可.首先,配置nginx.conf文件. ht ...
- gcc产生类型转换告警
问题背景: 看 https://www.cnblogs.com/sinaxyz/p/4525208.html 这个篇blog时候,发现在应用层代码中,函数 int open_netlink() 中,有 ...
- redis 和 kookeeper 连用 构建 redis集群
转载地址:https://www.zhihu.com/question/62598701
- this高级应用 - 域隔离
在js环境中,this有很多指向(window.dom.object等),巧妙的利用this,可以有效的防止变量或方法被外界污染,保证代码健壮性,实例如下. demo: <!DOCTYPE ht ...
- js 异步加载和同步加载
异步加载 异步加载也叫非阻塞模式加载,浏览器在下载js的同时,同时还会执行后续的页面处理.在script标签内,用js创建一个script元素并插入到document中,这种就是异步加载js文件了: ...
- go基础知识之变量,类型,常量,函数
3 变量 变量是什么 变量指定了某存储单元(Memory Location)的名称,该存储单元会存储特定类型的值.在 Go 中,有多种语法用于声明变量. 声明单个变量 var name type 是声 ...
- 使用unidac 在linux 上无驱动直接访问MS SQL SERVER
随着delphi 10.2 开始了对Linux 的重新支持.devart 也迅速的发布了unidac 7.0, 最大的特性就是支持linux和MongoDB. 并有了其他更新: In this rel ...
- hdu-1043(八数码+bfs打表+康托展开)
参考文章:https://www.cnblogs.com/Inkblots/p/4846948.html 康托展开:https://blog.csdn.net/wbin233/article/deta ...