1 关联分析

无监督机器学习方法中的关联分析问题。关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题。

2 Apriori算法

  频繁项集即出现次数多的数据集

  支持度就是几个关联的数据在数据集中出现的次数占总数据集的比重。或者说几个数据关联出现的概率。

  置信度体现了一个数据出现后,另一个数据出现的概率,或者说数据的条件概率

  提升度表示含有Y的条件下,同时含有X的概率,与X总体发生的概率之比

  Apriori算法采用了迭代的方法,先搜索出候选1项集及对应的支持度,剪枝去掉低于支持度的1项集,得到频繁1项集。然后对剩下的频繁1项集进行连接,得到候选的频繁2项集,筛选去掉低于支持度的候选频繁2项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。

2.1 Apriori算法流程
输入:数据集合D,支持度阈值α
输出:最大的频繁k项集
1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。
2)挖掘频繁k项集
a) 扫描数据计算候选频繁k项集的支持度
b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。
c) 基于频繁k项集,连接生成候选频繁k+1项集。
3) 令k=k+1,转入步骤2。
从算法的步骤可以看出,Aprior算法每轮迭代都要扫描数据集,因此在数据集很大,数据种类很多的时候,算法效率很低。
2.2 Apriori算法总结

  Aprior算法是一个非常经典的频繁项集的挖掘算法,很多算法都是基于Aprior算法而产生的,包括FP-Tree,GSP, CBA等。这些算法利用了Aprior算法的思想,但是对算法做了改进,数据挖掘效率更好一些,因此现在一般很少直接用Aprior算法来挖掘数据了,但是理解Aprior算法是理解其它Aprior类算法的前提,同时算法本身也不复杂,因此值得好好研究一番。

3 FP-growth算法

  FP-growth算法只需要对数据库进行两次遍历,从而高效发现频繁项集。

  FP-growth算法是基于Apriori原理的,通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但不能发现数据之间的关联规则。FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集,所以说Apriori算法是高效的。其中算法发现频繁项集的过程是:

(1)构建FP树;

(2)从FP树中挖掘频繁项集。

eg:FP-growth算法来高效发现频繁项集

end

机器学习之Apriori算法和FP-growth算法的更多相关文章

  1. 机器学习(十五)— Apriori算法、FP Growth算法

    1.Apriori算法 Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策. Apriori算法采用了迭代的方法,先搜 ...

  2. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

  3. FP—Growth算法

    FP_growth算法是韩家炜老师在2000年提出的关联分析算法,该算法和Apriori算法最大的不同有两点: 第一,不产生候选集,第二,只需要两次遍历数据库,大大提高了效率,用31646条测试记录, ...

  4. Frequent Pattern 挖掘之二(FP Growth算法)(转)

    FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结 ...

  5. 关联规则算法之FP growth算法

    FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结 ...

  6. Frequent Pattern (FP Growth算法)

    FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达 到这样的效果,它采用了一种简洁的数据 ...

  7. Frequent Pattern 挖掘之二(FP Growth算法)

    Frequent Pattern 挖掘之二(FP Growth算法) FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断 ...

  8. WordCount作业提交到FileInputFormat类中split切分算法和host选择算法过程源码分析

    参考 FileInputFormat类中split切分算法和host选择算法介绍  以及 Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputForm ...

  9. 数据挖掘-关联分析 Apriori算法和FP-growth 算法

    •1.关联分析概念 关联分析是从大量数据中发现项集之间有趣的关联和相关联系. ​ •定义:1.事务:每一条交易称为一个事务,如上图包含5个事务.2.项:交易的每一个物品称为一个项,例如豆奶,啤酒等. ...

随机推荐

  1. threejs指定对象旋转中心

    指定对象旋转中心 默认情况下,对象的旋转中心都是自身的中心.对于组对象而言,也是如此.因此,可以利用这个特点,实现对象绕任何点旋转,也就是指定旋转中心.比如我们想要下图的对象绕A点旋转  我们可以添加 ...

  2. PAT 1060 爱丁顿数(25)(STL-multiset+思路)

    1060 爱丁顿数(25 分) 英国天文学家爱丁顿很喜欢骑车.据说他为了炫耀自己的骑车功力,还定义了一个"爱丁顿数" E ,即满足有 E 天骑车超过 E 英里的最大整数 E.据说爱 ...

  3. APM浅析

    APM(Application Performance Management & Monitoring)一种基于云的性能监控服务(SaaS),以非侵入式监听探针,收集应用关键指标,生成分析报表 ...

  4. insert执行错误,怎么样获取具体的错误原因

    1.开启debug 2.去runtime里面去找最后执行的SQL

  5. filedisk.sys

    i386 amd http://blog.sina.com.cn/s/blog_4fcd1ea30100r19r.html

  6. Netty 源码 NioEventLoop(三)执行流程

    Netty 源码 NioEventLoop(三)执行流程 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) 上文提到在启动 N ...

  7. Clover相关知识

    -f 重建驱动缓存 darkwake=4 有深度睡眠有关的设置,不懂 kext-dev-mode=1 启用第三方驱动,比较重要. dart=0 修复因开启 VT-d 导致系统启动时SMC五国错误,系统 ...

  8. db2 解锁表

    db2 set integrity for ACT_RU_VARIABLE immediate checked

  9. 浅谈Spring中的Quartz配置

    浅谈Spring中的Quartz配置 2009-06-26 14:04 樊凯 博客园 字号:T | T Quartz是一个强大的企业级任务调度框架,Spring中继承并简化了Quartz,下面就看看在 ...

  10. python之常用模块篇5

    一.日志模块,logging模块 1)logging模块简单使用,屏幕输出.默认级别30 import logging logging.debug( logging.info( logging.war ...