CS229 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线。比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN。
如下是一个单层网络的示意图,类似于感知机分类器,下图有三个feature,有一个bias unit,其值始终为1,对应的参数为ϴ0 ϴ1 ϴ2 ϴ3,最后其线性组合做一个sigmod映射来得到最终的结果
下图为含有隐藏层的Neurons Networds,ai(j)中的j表示层数,i表示第 i 个unit,ϴ(j)示层j到j+1的参数矩阵ϴij表示前一层的单元j到本层单元i的参数,本示例中ϴ(1)为3*4的矩阵
更简洁的表示方法,把上一层的输入表示为z(i), 下图中的z(2) 分别表示上一层的activation,这三个值乘以对应的参数,然后做一个sigmod映射之后又可以当下一层的输入,最终我们的Hϴ(x)=g(ϴ(2)*a(2)),可见最后我们不是对初始特征x1 x2 x3做的运算,这可以理解为 Neurons Networks会自动组合特征,从而达到更好的效果。
最后只得注意的是,对于非线性可分的情况,NN也可以进行分类,比如XOR(异或)的情况:
CS229 6.1 Neurons Networks Representation的更多相关文章
- (六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- CS229 6.15 Neurons Networks Deep Belief Networks
Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...
- CS229 6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- CS229 6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
- CS229 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- CS229 6.17 Neurons Networks convolutional neural network(cnn)
之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了 ...
- CS229 6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
- CS229 6.14 Neurons Networks Restricted Boltzmann Machines
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM ...
随机推荐
- 一个类似 Twitter 雪花算法 的 连续序号 ID 产生器 SeqIDGenerator
项目地址 : https://github.com/kelin-xycs/SeqIDGenerator 今天 QQ 群 里有网友问起产生唯一 ID 的方法 有哪些, 讨论了各种方法 . 有网 ...
- 编译opencv python
1, 下载并且安装python2.7 + numpy 2,运行cmakegui打开opencv.应该要显示如下信息: Python 2: Interpreter: C:/Python27/python ...
- ElasticSearch停止启动
1.查找ES进程 ps -ef | grep elastic 2.杀掉ES进程 kill -9 2382(进程号) 3.重启ES sh elasticsearch -d 注意:elasticsearc ...
- PxCook 像素大厨 标注切图,一起搞定!专注设计本质
http://www.fancynode.com.cn/pxcook
- Spring Http Invoker使用简介
一.Spring HTTP Invoker简介 Spring HTTP invoker 是 spring 框架中的一个远程调用模型,执行基于 HTTP 的远程调用(意味着可以通过防火墙),并使用 ja ...
- PHP破解wifi密码(wifi万能钥匙的接口)
新建wifi.php,复制粘贴 <?php $bssid = $_POST["bssid"] ; $ssid = $_POST["ssid"] ; if ...
- 【转】用python比对数据库表数据的脚本
最近在做一个数据库异构复制的项目,客户表示需要一个数据比对的工具,我就自己写了一个异构数据库的比对python脚本.这个比对脚本只能比对数量,不能比对具体的记录.使用的sql语句也是最基础的selec ...
- scp命令拷贝
文件拷贝,将172.16.1.2中的文件拷贝到本机中 scp root@172.16.1.2:/home/root/others/music/1.mp3 /home/space/music/1.mp3 ...
- 跟着未名学Office – 整体了解 Ms Office 2010
目录 MS Office 2010 2 Microsoft Office System 2 Ribbon(功能区) 2 文件选项卡 3 SmartArt 3 屏幕截图 ...
- 自定义tt文本模板实现MySql指数据库中生成实体类
自定义tt文本模板实现MySql指数据库中生成实体类 1.在项目中依次点击“添加”/“新建项”,选择“文本模板”,输入名称后点击添加. 2.在Base.tt中添加如下代码. <#@ templa ...