CS229 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线。比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN。

如下是一个单层网络的示意图,类似于感知机分类器,下图有三个feature,有一个bias unit,其值始终为1,对应的参数为ϴ0 ϴ1 ϴ2 ϴ3,最后其线性组合做一个sigmod映射来得到最终的结果

下图为含有隐藏层的Neurons Networds,ai(j)中的j表示层数,i表示第 i 个unit,ϴ(j)示层j到j+1的参数矩阵ϴij表示前一层的单元j到本层单元i的参数,本示例中ϴ(1)为3*4的矩阵

更简洁的表示方法,把上一层的输入表示为z(i), 下图中的z(2) 分别表示上一层的activation,这三个值乘以对应的参数,然后做一个sigmod映射之后又可以当下一层的输入,最终我们的Hϴ(x)=g(ϴ(2)*a(2)),可见最后我们不是对初始特征x1 x2 x3做的运算,这可以理解为 Neurons Networks会自动组合特征,从而达到更好的效果。

最后只得注意的是,对于非线性可分的情况,NN也可以进行分类,比如XOR(异或)的情况:

CS229 6.1 Neurons Networks Representation的更多相关文章
- (六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- CS229 6.15 Neurons Networks Deep Belief Networks
Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...
- CS229 6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- CS229 6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
- CS229 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- CS229 6.17 Neurons Networks convolutional neural network(cnn)
之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了 ...
- CS229 6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
- CS229 6.14 Neurons Networks Restricted Boltzmann Machines
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM ...
随机推荐
- Electron-vue 新建Demo
vue init simulatedgreg/electron-vue Test(项目名)
- [转]xargs详解
为什么要用xargs,问题的来源 在工作中经常会接触到xargs命令,特别是在别人写的脚本里面也经常会遇到,但是却很容易与管道搞混淆,本篇会详细讲解到底什么是xargs命令,为什么要用xargs命令以 ...
- 用react编写一个hello world
我要分享的是用react搭建一个简单的hello world, 一个小demo, 大神请略过 首先看一下目录结构 创建一个目录, 用于存放demo mkdir reactHello cd reactH ...
- pip查看已安装包列表
输入命令: pip freeze 结果: certifi==2018.10.15chardet==3.0.4Django==2.1.2idna==2.7pytz==2018.5requests==2. ...
- 【java】构造函数
什么时候自定义构造函数:当分析事物时,事物一存在就具备一些特征或者行为,那么就把这么内容定义在构造函数中 作用:对对象进行初始化,对象一建立,就会自动调用与之对应的构造函数 特点: 1.函数名和类名相 ...
- zookeeper选举状态介绍 摘自https://cloud.tencent.com/developer/news/303891
zookeeper集群 配置多个实例共同构成一个集群对外提供服务以达到水平扩展的目的,每个服务器上的数据是相同的,每一个服务器均可以对外提供读和写的服务,这点和redis是相同的,即对客户端来讲每个服 ...
- MySQL 5.7.16 字符串拆分 -> 单列变多行记录(转发)
http://blog.csdn.net/mchdba/article/details/53889803 ----------------------------------------------- ...
- Azure 认知服务 (3) 计算机视觉API - 分析图像,使用C#代码
<Windows Azure Platform 系列文章目录> 在上一节中Azure 认知服务 (2) 计算机视觉API - 分析图像,笔者介绍了如何使用API测试控制台进行调试. 本章将 ...
- tomcat源码 分析 Catalina
通过查看分析启动脚本,发现最终调用的入口是org.apache.catalina.startup包下面的Bootstrap#main public static void main(String ar ...
- IDEA创建简单servlet程序
创建项目 创建完后的目录结构为: web项目配置 在WEB-INF目录下新建两个文件夹,分别命名未classes和lib(classes目录用于存放编译后的class文件,lib用于存放依赖的jar包 ...