面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线。比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN。

如下是一个单层网络的示意图,类似于感知机分类器,下图有三个feature,有一个bias unit,其值始终为1,对应的参数为ϴϴϴϴ3,最后其线性组合做一个sigmod映射来得到最终的结果

下图为含有隐藏层的Neurons Networds,ai(j)中的j表示层数,i表示第 i 个unit,ϴ(j)示层j到j+1的参数矩阵ϴij表示前一层的单元j到本层单元i的参数,本示例中ϴ(1)为3*4的矩阵

更简洁的表示方法,把上一层的输入表示为z(i), 下图中的z(2) 分别表示上一层的activation,这三个值乘以对应的参数,然后做一个sigmod映射之后又可以当下一层的输入,最终我们的Hϴ(x)=g(ϴ(2)*a(2)),可见最后我们不是对初始特征x1 x2 x3做的运算,这可以理解为 Neurons Networks会自动组合特征,从而达到更好的效果。

最后只得注意的是,对于非线性可分的情况,NN也可以进行分类,比如XOR(异或)的情况:

CS229 6.1 Neurons Networks Representation的更多相关文章

  1. (六) 6.1 Neurons Networks Representation

    面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...

  2. CS229 6.10 Neurons Networks implements of softmax regression

    softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...

  3. CS229 6.15 Neurons Networks Deep Belief Networks

    Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...

  4. CS229 6.11 Neurons Networks implements of self-taught learning

    在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...

  5. CS229 6.8 Neurons Networks implements of PCA ZCA and whitening

    PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4 ...

  6. CS229 6.2 Neurons Networks Backpropagation Algorithm

    今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...

  7. CS229 6.17 Neurons Networks convolutional neural network(cnn)

    之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了 ...

  8. CS229 6.16 Neurons Networks linear decoders and its implements

    Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...

  9. CS229 6.14 Neurons Networks Restricted Boltzmann Machines

    1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM ...

随机推荐

  1. RequireJS 学习资料收集

    RequireJS 学习资料收集 RequireJS 模块化管理 Javascript 比较优秀. RequireJS 英文官网 https://requirejs.org/ RequireJS 中文 ...

  2. Kafka Stream

    Kafka Stream是Apache Kafka从0.10版本引入的一个新Feature(当前:1.0.0-rc0,参见:https://github.com/apache/kafka/releas ...

  3. 【java】for循环嵌套

    循环嵌套:外循环控制行数,内循环控制每一行的列数,也就是每一行的元素个数 需求:打印出9*9的乘法表 class Demo { public static void main(String[] arg ...

  4. 利用event为z数据表定期添加和删除分区

    我们去年就开始把zabbix数据库改成用TokuDB来支撑,并且启用了表分区(详情见:迁移Zabbix数据库到TokuDB).这样做的好处很明显,较早的历史数据可以通过删除分区快速废弃掉.要知道,za ...

  5. MHA failover GTID 专题

    https://yq.aliyun.com/articles/238882?spm=5176.8067842.tagmain.18.73PjU3 摘要: MHA failover GTID 专题 这里 ...

  6. Ubuntu 18.04 rc.local systemd设置

    ubuntu18.04不再使用initd管理系统,改用systemd. 然而systemd很难用,改变太大,跟之前的完全不同. 使用systemd设置开机启动为了像以前一样,在/etc/rc.loca ...

  7. 解决js输出汉字乱码问题

    当我们需要使用js输出汉字时,偶然会出现输出的中文汉字乱码的情况,在网上收了很多解决方案 1.在mata中加 <meta content="text/html; charset=utf ...

  8. jsp页面间对象传递方法

    严格的来说不能叫做JSP页面间的对象传递,实际应该是页面间对象共享的方法: 1. 通过servletcontext,也就是application对象了,但这种情况要求在同一个web应用下,      ...

  9. Lucene 4.3 - Facet demo

    package com.fox.facet; import java.io.IOException; import java.util.ArrayList; import java.util.List ...

  10. bzoj4980: 第一题

    Description 神犇xzyo听说sl很弱,于是出了一题来虐一虐sl.一个长度为2n(可能有前缀0)的非负整数x是good的,当且仅当 存在两个长度为n(可能有前缀0)的非负整数a.b满足a+b ...