KMP算法的一个简单实现
今天学习KMP算法,参考网上内容,实现算法,摘录网页内容并记录自己的实现如下:
原文出处: http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html
字符串匹配是计算机的基本任务之一。
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。
这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
======================================================原文到此为止================================================================================
我的算法实现:
// KMP.cpp #include<iostream>
#include<string>
using namespace std; void makeNext(const char P[], int netxt[]);
int KMP(const char T[], const char P[]); int main(int argc, char* argv[])
{
if (argc != )
{
cerr << "Usage: KMP <T-string> <P-string>\n";
exit();
}
int res = ;
res = KMP(argv[], argv[]);
if (res == -)
{
cout << "Pattern not found...\n";
}
else
{
cout << "'" << argv[] << "' " << "was found in '" << argv[] << "' from index " << res << endl;
}
return ;
} void makeNext(const char P[], int next[])
{
int i, k; //i 是顺序Index,k 是当前匹配的长度
int m = strnlen_s(P, INT_MAX);
next[] = ;
for (i = , k = ; i < m; i++)
{
while (k > && P[k] != P[i])
{
k = next[k - ]; //如果当前字符没有匹配,则查看上一个最长匹配位置后面的一个字符是否匹配
}
if (P[i] == P[k])
{
k++;
}
next[i] = k;
}
} int KMP(const char T[], const char P[])
{
int m = strnlen_s(P, INT_MAX);
int n = strnlen_s(T, INT_MAX);
int * next = new int[m]; //分配和模板字符串长度相同的next数组
memset(next, , m*sizeof(int));// next[0]=0 足矣,且更高效;由于 makeNext里面有 next[0]=0的赋值语句,所以无需本步操作也可以。 makeNext(P, next); int k, i; // i 是 T-string的 Index,k 是 P-string 与 T-string 匹配的长度
for (k = , i = ; i <n; i++)
{
while (k > && P[k] != T[i])
{
k = next[k - ];
}
if (P[k] == T[i])
{
k++;
}
if (k == m)
{
delete next;
return i-m+;
}
} delete next;
return -;
}
KMP算法的一个简单实现的更多相关文章
- kmp算法笔记(简单易懂)
一般字符串比较长串m短串为n,那么用暴力方法复杂度为O(m*n) 但是kmp却可以达到O(m+n)!!!!!! 对于这个神奇的算法,我也是似懂非懂, 下面介绍一个简单的方法求kmp 1.求next数组 ...
- 关于apriori算法的一个简单的例子
apriori算法是关联规则挖掘中很基础也很经典的一个算法,我认为很多教程出现大堆的公式不是很适合一个初学者理解.因此,本文列举一个简单的例子来演示下apriori算法的整个步骤. 下面这个表格是代表 ...
- KMP算法与一个经典概率问题
考虑一个事件,它有两种概率均等的结果.比如掷硬币,出现正面和反面的机会是相等的.现在我们希望知道,如果我不断抛掷硬币,需要多长时间才能得到一个特定的序列. 序列一:反面.正面.反面序列二:反面.正面. ...
- KMP算法实践与简单分析
一.理解next数组 1.约定next[0]=-1,同时可以假想在sub串的最前面有一个通配符"*",能够任意匹配.对应实际的代码t<0时的处理情况. 2.next[j]可以 ...
- KMP算法的一个C++实现
本文参考阮一峰老师的KMP算法,重点是“部分匹配表”的建立.算法可参考 http://kb.cnblogs.com/page/176818/ . /* * kmp.cpp * Author: Qian ...
- Adaboost算法的一个简单实现——基于《统计学习方法(李航)》第八章
最近阅读了李航的<统计学习方法(第二版)>,对AdaBoost算法进行了学习. 在第八章的8.1.3小节中,举了一个具体的算法计算实例.美中不足的是书上只给出了数值解,这里用代码将它实现一 ...
- Paxos算法的一个简单小故事
一.Paxos是什么? Paxos,它是一个基于消息传递的一致性算法,Leslie Lamport在1990年提出,近几年被广泛应用于分布式计算中,Google的Chubby,Apache的Zooke ...
- HDU 3613 Best Reward(KMP算法求解一个串的前、后缀回文串标记数组)
题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. ...
- KMP算法
KMP算法是字符串模式匹配当中最经典的算法,原来大二学数据结构的有讲,但是当时只是记住了原理,但不知道代码实现,今天终于是完成了KMP的代码实现.原理KMP的原理其实很简单,给定一个字符串和一个模式串 ...
随机推荐
- 分享自建的 Jrebel License Server 激活 Jrebel
使用在线验证服务器激活 Jrebel 与 Idea 说明 代码来自于开源项目: gsls200808 / JrebelLicenseServerforJava 自建的服务地址 http://jrebe ...
- Idea中更改主题后xml配置文件局部黄色背景颜色去除
相信很多小伙伴和我一样一样的,喜欢更换Idea的主题,但是细心的小伙伴就发现了,每次更改主题后xml配置文件就会局部产生黄色背景颜色,对于强迫症患者真的是够了,网上也有部分文章,但是不够详细,也跟Id ...
- 断电后gitlab报500错误启动出错
异常断电后,gitlab报500错误,重启无效 通过sudo gitlab-ctl reconfigure启动时, 提示 [execute] pgsql:could not connect to se ...
- CDQZ Day5
1DP #1题目名称 题目名称匹配块路径染色输入文件名 输入文件名match.in.in.inblock.inpath.inpaint.in输出文件名 输出文件名match.out.out.out.o ...
- Django项目创建与管理
1.主题 这部分教程主要介绍如何通过Pycharm创建.管理.运行一个Django工程.对于Django模块的相关知识大家可以参考Python社区. 2.准备环境 Django版本为2.0或更高 Py ...
- Pycharm与github的秘密
GIT介绍 GIT文章请看老男孩教育-银角大王的博客: http://www.cnblogs.com/wupeiqi/articles/7295372.html Git 是一个开源的分布式版本控制软件 ...
- AXI协议(一)
最近弄Zynq,不懂AXI协议Zynq很难玩儿的转.这些笔记主要攻克AXI中的一些难题. 所有的AXI4包含了5个不同的通道: (1)读/写地址通道(Read/Write address ch ...
- Laravel 视图调用model方法
首先控制器 model 视图
- db2 monitor event
1.创建事件监控器至少需要哪些权限? DBADM authority SQLADM authority 2.事件监控器的种类有哪些? 3. db2 flush event monitor eventm ...
- user agent stylesheet -- 浏览器默认样式
user agent stylesheet 从字面意义上很容易理解他表示用户浏览器的样式表. 今天在做项目时,无意间发现一个元素我并没有设置li的text-align:center : 但其中的img ...