今天学习KMP算法,参考网上内容,实现算法,摘录网页内容并记录自己的实现如下:

原文出处: http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

======================================================原文到此为止================================================================================

我的算法实现:

// KMP.cpp

#include<iostream>
#include<string>
using namespace std; void makeNext(const char P[], int netxt[]);
int KMP(const char T[], const char P[]); int main(int argc, char* argv[])
{
if (argc != )
{
cerr << "Usage: KMP <T-string> <P-string>\n";
exit();
}
int res = ;
res = KMP(argv[], argv[]);
if (res == -)
{
cout << "Pattern not found...\n";
}
else
{
cout << "'" << argv[] << "' " << "was found in '" << argv[] << "' from index " << res << endl;
}
return ;
} void makeNext(const char P[], int next[])
{
int i, k;  //i 是顺序Index,k 是当前匹配的长度
int m = strnlen_s(P, INT_MAX);
next[] = ;
for (i = , k = ; i < m; i++)
{
while (k > && P[k] != P[i])
{
k = next[k - ]; //如果当前字符没有匹配,则查看上一个最长匹配位置后面的一个字符是否匹配
}
if (P[i] == P[k])
{
k++;
}
next[i] = k;
}
} int KMP(const char T[], const char P[])
{
int m = strnlen_s(P, INT_MAX);
int n = strnlen_s(T, INT_MAX);
int * next = new int[m]; //分配和模板字符串长度相同的next数组
memset(next, , m*sizeof(int));// next[0]=0 足矣,且更高效;由于 makeNext里面有 next[0]=0的赋值语句,所以无需本步操作也可以。 makeNext(P, next); int k, i; // i 是 T-string的 Index,k 是 P-string 与 T-string 匹配的长度
for (k = , i = ; i <n; i++)
{
while (k > && P[k] != T[i])
{
k = next[k - ];
}
if (P[k] == T[i])
{
k++;
}
if (k == m)
{
delete next;
return i-m+;
}
} delete next;
return -;
}

KMP算法的一个简单实现的更多相关文章

  1. kmp算法笔记(简单易懂)

    一般字符串比较长串m短串为n,那么用暴力方法复杂度为O(m*n) 但是kmp却可以达到O(m+n)!!!!!! 对于这个神奇的算法,我也是似懂非懂, 下面介绍一个简单的方法求kmp 1.求next数组 ...

  2. 关于apriori算法的一个简单的例子

    apriori算法是关联规则挖掘中很基础也很经典的一个算法,我认为很多教程出现大堆的公式不是很适合一个初学者理解.因此,本文列举一个简单的例子来演示下apriori算法的整个步骤. 下面这个表格是代表 ...

  3. KMP算法与一个经典概率问题

    考虑一个事件,它有两种概率均等的结果.比如掷硬币,出现正面和反面的机会是相等的.现在我们希望知道,如果我不断抛掷硬币,需要多长时间才能得到一个特定的序列. 序列一:反面.正面.反面序列二:反面.正面. ...

  4. KMP算法实践与简单分析

    一.理解next数组 1.约定next[0]=-1,同时可以假想在sub串的最前面有一个通配符"*",能够任意匹配.对应实际的代码t<0时的处理情况. 2.next[j]可以 ...

  5. KMP算法的一个C++实现

    本文参考阮一峰老师的KMP算法,重点是“部分匹配表”的建立.算法可参考 http://kb.cnblogs.com/page/176818/ . /* * kmp.cpp * Author: Qian ...

  6. Adaboost算法的一个简单实现——基于《统计学习方法(李航)》第八章

    最近阅读了李航的<统计学习方法(第二版)>,对AdaBoost算法进行了学习. 在第八章的8.1.3小节中,举了一个具体的算法计算实例.美中不足的是书上只给出了数值解,这里用代码将它实现一 ...

  7. Paxos算法的一个简单小故事

    一.Paxos是什么? Paxos,它是一个基于消息传递的一致性算法,Leslie Lamport在1990年提出,近几年被广泛应用于分布式计算中,Google的Chubby,Apache的Zooke ...

  8. HDU 3613 Best Reward(KMP算法求解一个串的前、后缀回文串标记数组)

    题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. ...

  9. KMP算法

    KMP算法是字符串模式匹配当中最经典的算法,原来大二学数据结构的有讲,但是当时只是记住了原理,但不知道代码实现,今天终于是完成了KMP的代码实现.原理KMP的原理其实很简单,给定一个字符串和一个模式串 ...

随机推荐

  1. 分享自建的 Jrebel License Server 激活 Jrebel

    使用在线验证服务器激活 Jrebel 与 Idea 说明 代码来自于开源项目: gsls200808 / JrebelLicenseServerforJava 自建的服务地址 http://jrebe ...

  2. Idea中更改主题后xml配置文件局部黄色背景颜色去除

    相信很多小伙伴和我一样一样的,喜欢更换Idea的主题,但是细心的小伙伴就发现了,每次更改主题后xml配置文件就会局部产生黄色背景颜色,对于强迫症患者真的是够了,网上也有部分文章,但是不够详细,也跟Id ...

  3. 断电后gitlab报500错误启动出错

    异常断电后,gitlab报500错误,重启无效 通过sudo gitlab-ctl reconfigure启动时, 提示 [execute] pgsql:could not connect to se ...

  4. CDQZ Day5

    1DP #1题目名称 题目名称匹配块路径染色输入文件名 输入文件名match.in.in.inblock.inpath.inpaint.in输出文件名 输出文件名match.out.out.out.o ...

  5. Django项目创建与管理

    1.主题 这部分教程主要介绍如何通过Pycharm创建.管理.运行一个Django工程.对于Django模块的相关知识大家可以参考Python社区. 2.准备环境 Django版本为2.0或更高 Py ...

  6. Pycharm与github的秘密

    GIT介绍 GIT文章请看老男孩教育-银角大王的博客: http://www.cnblogs.com/wupeiqi/articles/7295372.html Git 是一个开源的分布式版本控制软件 ...

  7. AXI协议(一)

    最近弄Zynq,不懂AXI协议Zynq很难玩儿的转.这些笔记主要攻克AXI中的一些难题. 所有的AXI4包含了5个不同的通道:     (1)读/写地址通道(Read/Write address ch ...

  8. Laravel 视图调用model方法

    首先控制器 model 视图

  9. db2 monitor event

    1.创建事件监控器至少需要哪些权限? DBADM authority SQLADM authority 2.事件监控器的种类有哪些? 3. db2 flush event monitor eventm ...

  10. user agent stylesheet -- 浏览器默认样式

    user agent stylesheet 从字面意义上很容易理解他表示用户浏览器的样式表. 今天在做项目时,无意间发现一个元素我并没有设置li的text-align:center : 但其中的img ...