Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a \(k\) -tree.

最近有一个富有创造力的学生Lesha听了一个关于树的讲座。在听完讲座之后,Lesha受到了启发,并且他有一个关于k-tree(k叉树)的想法。

A k -tree is an infinite rooted tree where:

each vertex has exactly k k children;

each edge has some weight;

if we look at the edges that goes from some vertex to its children (exactly k k edges), then their weights will equal\(1,2,3,...,k\).

k-tree都是无根树,并且满足:

每一个非叶子节点都有k个孩子节点;

每一条边都有一个边权;

每一个非叶子节点指向其k个孩子节点的k条边的权值分别为1,2,3,...,k。

The picture below shows a part of a 3-tree.

如图所示:

As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n n (the sum of all weights of the edges in the path) are there, starting from the root of a k k -tree and also containing at least one edge of weight at least d d ?".Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 1000000007 (\(10^{9}+7\)).

当Lesha的好朋友Dima看到这种树时,Dima马上想到了一个问题:“有多少条从k-tree的根节点出发的路上的边权之和等于n,并且经过的这些边中至少有一条边的边权大于等于d呢?” 现在你需要帮助Dima解决这个问题。考虑到路径总数可能会非常大,所以只需输出路径总数 mod 1000000007 即可。(1000000007=10^9+7)

输入格式

A single line contains three space-separated integers: n, k and d(\(1<=n,k<=100;1<=d<=k\)).

只有一行数,n,k,d. (1 <= n, k <= 100; 1 <= d <= k; n, d, k 三者用空格隔开)。

输出格式

Print a single integer — the answer to the problem modulo1000000007 (\(10^{9}+7\)).

只有一行,一个整数,即输出路径总数 mod 1000000007。

样例输入

3 3 2

样例输出

3

题解

#include<bits/stdc++.h>
#define maxk 105
#define maxn 105
using namespace std;
const long long mod = 1e9+7;
inline char get(){
static char buf[3000],*p1=buf,*p2=buf;
return p1==p2 && (p2=(p1=buf)+fread(buf,1,3000,stdin),p1==p2)?EOF:*p1++;
}
inline long long read(){
register char c=get();register long long f=1,_=0;
while(c>'9' || c<'0')f=(c=='-')?-1:1,c=get();
while(c<='9' && c>='0')_=(_<<3)+(_<<1)+(c^48),c=get();
return _*f;
}
long long n,k,d;
long long dp[maxn][3];//第一维记录不考虑d的情况,第二维记录考虑d的情况
long long cas;
int main(){
//freopen("1.txt","r",stdin);
n=read();k=read();d=read();//总和等于n,k叉树,至少一条边大于等于d
for(register long long i=1;i<=n;i++){//i表示当前n=i
for(register long long j=1;j<=k && j<=i;j++){
cas=i-j;
bool used_d=0;
if(j>=d)used_d=1;
dp[i][1]+=dp[cas][1];//因为第一维不考虑d的大小,直接相加即可
if(cas==0){
dp[i][1]++;//无论如何第一维都要加
if(used_d)dp[i][2]++;//如果当前考虑了d,则让考虑了d的维度更新
}
else{
if(used_d)dp[i][2]+=dp[cas][1];//如果目前考虑的d,则之前就不用考虑d了
else dp[i][2]+=dp[cas][2];//如果目前没考虑d,则之前要考虑d
}
}
dp[i][1]%=mod;
dp[i][2]%=mod;
}
cout<<dp[n][2]%mod;
return 0;
}

[CodeForce431C]k-tree的更多相关文章

  1. E - Count on a tree 树上第K小

    主席树的入门题目,这道题的题意其实就是说,给你一棵树,询问在两个节点之间的路径上的区间第K小 我们如何把树上问题转换为区间问题呢? 其实DFS就可以,我们按照DFS的顺序,对线段树进行建树,那么这个树 ...

  2. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

  3. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

  4. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  5. Codeforces 620E New Year Tree(DFS序 + 线段树)

    题目大概说给一棵树,树上结点都有颜色(1到60),进行下面两个操作:把某结点为根的子树染成某一颜色.询问某结点为根的子树有多少种颜色. 子树,显然DFS序,把子树结点映射到连续的区间.而注意到颜色60 ...

  6. POJ3321 Apple Tree(DFS序)

    题目,是对一颗树,单点修改.子树查询.典型的dfs序入门题. DFS序可以将一颗树与子树们表示为一个连续的区间,然后用线段树来维护:感觉算是树链剖分的一种吧,和轻重链剖分不同的是这是对子树进行剖分的. ...

  7. poj3237 Tree

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  8. Size Balanced Tree(SBT) 模板

    首先是从二叉搜索树开始,一棵二叉搜索树的定义是: 1.这是一棵二叉树: 2.令x为二叉树中某个结点上表示的值,那么其左子树上所有结点的值都要不大于x,其右子树上所有结点的值都要不小于x. 由二叉搜索树 ...

  9. [模板] K-D Tree

    K-D Tree K-D Tree可以看作二叉搜索树的高维推广, 它的第 \(k\) 层以所有点的第 \(k\) 维作为关键字对点做出划分. 为了保证划分均匀, 可以以第 \(k\) 维排名在中间的节 ...

  10. HDU 2665.Kth number 区间第K小

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. 我想写一个前端开发工具(三):优化!从vue-cli学了几招

    我从过年开始写自己的前端工具 coodev,目前已经写出一个基本的架子,大多数预想的功能都能跑通,还剩一些需要解决的问题也都已经列出来了.本来这一周打算解决对不同后端模板的前后端渲染支持的问题.但是看 ...

  2. M4修改外部晶振8M和25M晶振的方法

    共计修改三个参数: 1.HSE_VALUE   具体位置在stm32f4xx.h中 2.PLL_M          具体位置在system_stm32f4xx.c中 3.Keil编译器 工程的Opt ...

  3. laravel 5.7 resources 本地化 简体中文

    使用方法: 新建目录[项目目录/resources/lang/zh] 按以下内容创建文件,并将内容复制到文件中 修改 config/app.php 'locale' => 'zh', 'fall ...

  4. chromium之message_pump_win之三

    上一篇分析MessagePumpForUI,参考chromium之message_pump_win之二 MessagePumpForIO,同MessagePumpForUI,也是要实现三个函数 // ...

  5. mac Axure RP 8 授权码 以及汉化

    Koshy wTADPqxn3KChzJxLmUr5jTTitCgsfRkftQQ1yIG9HmK83MYSm7GPxLREGn+Ii6xY 汉化包 汉化包链接 密码: upri 汉化步骤 以Win7 ...

  6. Resharp常用设置收集整理

    F12跳转的问题:

  7. 初识Java——第一章 初识Java

    1. 计算机程序: 为了让计算机执行某些操作或解决某个问题而编写的一系列有序指令的集合. 2. JAVA相关的技术:      1).安装和运行在本机上的桌面程序      2).通过浏览器访问的面向 ...

  8. 课时133.margintop失效原因(理解)

    我们之前讲过如果只有子元素设置了margin top而父元素没有边框则会跟着被顶下来的. 而我们怎么解决这个问题呢? 就是给父元素设置一个边框 而为什么我们在第二个浮动的盒子设置边框没有用呢?应为第一 ...

  9. Java性能优化的50个细节

    在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身.养成良好的编码习惯非常重要,能够显著地提升程序性能. 1. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时 ...

  10. 隐藏Windows不常用设置项

    Windows10的设置里面有很多我们不想看见的项目,例如"轻松使用","隐私","游戏","Cortana"等,我们可 ...