Codeforces 1104 D. Game with modulo-交互题-二分-woshizhizhang(Codeforces Round #534 (Div. 2))
1 second
256 megabytes
standard input
standard output
This is an interactive problem.
Vasya and Petya are going to play the following game: Petya has some positive integer number aa. After that Vasya should guess this number using the following questions. He can say a pair of non-negative integer numbers (x,y)(x,y). Petya will answer him:
- "x", if (xmoda)≥(ymoda)(xmoda)≥(ymoda).
- "y", if (xmoda)<(ymoda)(xmoda)<(ymoda).
We define (xmoda)(xmoda) as a remainder of division xx by aa.
Vasya should guess the number aa using no more, than 60 questions.
It's guaranteed that Petya has a number, that satisfies the inequality 1≤a≤1091≤a≤109.
Help Vasya playing this game and write a program, that will guess the number aa.
Your program should play several games.
Before the start of any game your program should read the string:
- "start" (without quotes) — the start of the new game.
- "mistake" (without quotes) — in the previous game, you found the wrong answer. Your program should terminate after reading this string and it will get verdict "Wrong answer".
- "end" (without quotes) — all games finished. Your program should terminate after reading this string.
After reading the string "start" (without quotes) the new game starts.
At the beginning, your program should ask several questions about pairs of non-negative integer numbers (x,y)(x,y). You can only ask the numbers, that satisfy the inequalities 0≤x,y≤2⋅1090≤x,y≤2⋅109. To ask a question print "? x y" (without quotes). As the answer, you should read one symbol:
- "x" (without quotes), if (xmoda)≥(ymoda)(xmoda)≥(ymoda).
- "y" (without quotes), if (xmoda)<(ymoda)(xmoda)<(ymoda).
- "e" (without quotes) — you asked more than 6060 questions. Your program should terminate after reading this string and it will get verdict "Wrong answer".
After your program asked several questions your program should print the answer in form "! a" (without quotes). You should print the number aa satisfying the inequalities 1≤a≤1091≤a≤109. It's guaranteed that Petya's number aa satisfied this condition. After that, the current game will finish.
We recall that your program can't ask more than 6060 questions during one game.
If your program doesn't terminate after reading "mistake" (without quotes), "end" (without quotes) or "e" (without quotes), it can get any verdict, because it will continue reading from closed input. Also, if your program prints answer or question in the incorrect format it can get any verdict, too. Be careful.
Don't forget to flush the output after printing questions and answers.
To flush the output, you can use:
- fflush(stdout) in C++.
- System.out.flush() in Java.
- stdout.flush() in Python.
- flush(output) in Pascal.
- See the documentation for other languages.
It's guaranteed that you should play at least 11 and no more than 100100 games.
Hacks:
In hacks, you can use only one game. To hack a solution with Petya's number aa (1≤a≤1091≤a≤109) in the first line you should write a single number 11 and in the second line you should write a single number aa.
start
x
x
start
x
x
y
start
x
x
y
y
end
? 0 0
? 10 1
! 1
? 0 0
? 3 4
? 2 5
! 2
? 2 4
? 2 5
? 3 10
? 9 1
! 3
In the first test, you should play 33 games with Petya's numbers 11, 22 and 33.
In the first game, Petya will answer "x" (without quotes) to any question, because (xmod1)=0(xmod1)=0 for any integer xx.
In the second game, if you will ask pair (0,0)(0,0), the answer will be "x" (without quotes), because (0mod2)≥(0mod2)(0mod2)≥(0mod2). But if you will ask pair (2,5)(2,5), the answer will be "y" (without quotes), because (2mod2)<(5mod2)(2mod2)<(5mod2), because (2mod2)=0(2mod2)=0 and (5mod2)=1(5mod2)=1.
题意就是猜数,通过x和y猜取模的数a,就类似于猜钱,假设我有钱,但是具体数量只有我知道,我的好友来猜,他说我的钱数在1块和2块之前,我说不对,然后猜在2块和4块之间,不对,然后。。。猜在50到100之间,对的,继续,在75到50之间,对的,然后继续,缩小范围,最后就找到了。就是二分的思路。
我写的时候wa了一面交题记录。。。各种错误,二分太挫了,最后发现是初始值放错位置了,这还写什么鬼代码。。。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+; int main()
{
char ch[],op[];
while(cin>>ch){
if(ch[]!='s') break;
ll x=,y=;
while(true){
cout<<"? "<<x<<" "<<y<<endl;
cin>>op;
if(op[]=='x') break;
x=y,y=y*;
}
ll l=x,r=y,mid;
while(l<r-){
mid=(l+r)>>;
cout<<"? "<<mid<<" "<<l<<endl;
cin>>op;
if(op[]=='x') l=mid;
else r=mid;
}
cout<<"? "<<r<<" "<<l<<endl;
cin>>op;
if(op[]=='x') cout<<"! "<<l<<endl;
else cout<<"! "<<r<<endl;
fflush(stdout);
}
return ;
}
...
Codeforces 1104 D. Game with modulo-交互题-二分-woshizhizhang(Codeforces Round #534 (Div. 2))的更多相关文章
- D. Game with modulo 交互题(取余(膜)性质)附带a mod b<a/2证明
D. Game with modulo 交互题(取余(膜)性质) 题意 猜一个点\(a\)可以向机器提问 点对\((x,y)\) 如果\(x\mod(a)>=y\mod(a)\)回答\(x\) ...
- Codeforces Round #371 (Div. 2) D. Searching Rectangles 交互题 二分
D. Searching Rectangles 题目连接: http://codeforces.com/contest/714/problem/D Description Filya just lea ...
- Codeforces Round #534 (Div. 2) D. Game with modulo(取余性质+二分)
D. Game with modulo 题目链接:https://codeforces.com/contest/1104/problem/D 题意: 这题是一个交互题,首先一开始会有一个数a,你最终的 ...
- Codeforces Round #534 (Div. 2)
B. Game with string 题意: 给出一个字符串s只包括小写字母.当轮到一个玩家的时候,他可以选择两个连续且相等的字母并且删除它.当一个玩家没得删的时候他就输了. 题解: 乍一看有点懵, ...
- Codeforces Round #534 (Div. 2) Solution
A. Splitting into digits Solved. #include <bits/stdc++.h> using namespace std; int n; void sol ...
- 20191028 Codeforces Round #534 (Div. 1) - Virtual Participation
菜是原罪. 英语不好更是原罪. \(\mathrm{A - Grid game}\) 题解 \(4 \times 4\) 的格子,两种放法. 发现这两种在一起时候很讨厌,于是强行拆分这个格子 上面 \ ...
- Codeforces Round #534 (Div. 1)
A 构造题 有一个44的方格 每次放入一个横向12或竖向2*1的方格 满了一行或一列就会消掉 求方案 不放最后一行 这样竖行就不会消 然后竖着的放前两行 横着的放第三行 循环放就可以啦 #includ ...
- Codeforces Round #534 (Div. 2) D. Game with modulo 交互题
先二分一个区间,再在区间里面二分即可: 可以仔细想想,想明白很有意思的: #include<iostream> #include<cstdio> #include<alg ...
- Vladik and Favorite Game CodeForces - 811D (思维+BFS+模拟+交互题)
D. Vladik and Favorite Game time limit per test 2 seconds memory limit per test 256 megabytes input ...
随机推荐
- hdu 3689 Infinite monkey theorem
Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- SPOJ AMR11E Distinct Primes 基础数论
Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger i ...
- Independence.
It's not giving up, it's letting go, and moving to a better place. I will survive and be the one who ...
- Quick-Cocos2dx-Community_3.6.3_Release 编译时libtiff.lib 无法解析
Quick-Cocos2dx-Community_3.6.3_Release 使用VS2012编译,报错: libtiff.lib lnk2001 无法解析的外部符号 ltod3 类似于上面这种,刚才 ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- Winform GDI+
什么是GDI+ GDI (Graphics Device Interface), 是属于绘图方面的 API (Application Programming Interface). 因为应用程序不能直 ...
- React的单向数据流与组件间的沟通
今天来给大家总结下React的单向数据流与组件间的沟通. 首先,我认为使用React的最大好处在于:功能组件化,遵守前端可维护的原则. 先介绍单向数据流吧. React单向数据流: React是单向数 ...
- hdfs文件上传机制与namenode元数据管理机制
1.hdfs文件上传机制 文件上传过程: 1.客户端想NameNode申请上传文件, 2.NameNode返回此次上传的分配DataNode情况给客户端 3.客户端开始依向dataName上传对应 ...
- 2014ACM/ICPC亚洲区北京站题解
本题解不包括个人觉得太水的题(J题本人偷懒没做). 个人觉得这场其实HDU-5116要比HDU-5118难,不过赛场情况似乎不是这样.怀疑是因为老司机带错了路. 这套题,个人感觉动态规划和数论是两个主 ...
- aspxpivotgrid 导出excel时,非绑定咧显示为0的情况
using DevExpress.XtraPrinting; Exporter.ExportXlsToResponse(this.Title,TextExportMode.Text,true); // ...