Description

对于每个数字x,我们总可以把它表示成一些斐波拉切数字之和,比如8 = 5 + 3,  而22 = 21 + 1,因此我们可以写成  x = a1 * Fib1 + a2 * Fib2 + a3 * Fib3 + … + an * Fibn, 其中,Fib1 = 1, Fib2 = 2…. Fib[i] = Fib[i – 1] + Fib[I - 2],  且a[n] > 0.那么我们称ai为x的一种斐波拉切表示,由于表示方法有很多种,我们要求最大化a[1…n],即,如果b[1…n]和a[1…m]都可以表示x,若m >  n 则a更大,若  m  =  n,  则从高位到低位比,第一个不同处i,若ai  > bi  则a比b大。

你的任务很简单,给你两个用斐波拉切数最大化表示的两个数字,输出他们相加后用斐波那契最大化表示的数字。

 

Input

两行,分别表示两个数字

每一行开头一个n,表示长度

然后紧接着n个数字,为从低位到高位。

Output

同输入格式。一行。
 

Sample Input

4 0 1 0 1
5 0 1 0 0 1

Sample Output

6 1 0 1 0 0 1
 

Data Constraint

对于30%的数据  长度  <= 1000

对于100%的数据  长度  <= 1000000

算出十进制值相加后再用斐波那契最大化表示显然接受不了,我们得在序列里找出规律。

这里有两个不难发现的运算法则:

1.如果有连续两位i,i-1是1,那么它们可以“运算”使得第三位i+1是1.    如 0 1 0 1 1 0 = 0 1 0 0 0 1

2.如果这个位i是2,那么它可以使它的后一位i+1和前两位i-2是1.  如 0 0 2 0 0 1 0=1 0 0 1 0 1 0

随便弄上十几次这样就可以了。

 #include<cstdio>
#include<iostream>
using namespace std;
int f[],n,x,len1,len2;
int main(){
f[]=;
f[]=;
f[]=;
scanf("%d",&len1);
for (int i=;i<=len1;i++)
scanf("%d",&f[i]);
scanf("%d",&len2);
for (int i=;i<=len2;i++){
int x=;
scanf("%d",&x);
f[i]+=x;
}
int qwq=max(len1,len2);
int qoq=true;
do{
qoq=false;
int qaq=qwq;
for (int i=;i<=qwq;i++){
if ((f[i-])&&(f[i])){
f[i+]++;
qwq=max(qwq,i+);
f[i]--;
f[i-]--;
}
}
if (f[]==){
f[]++;
f[]=;
}
if (f[]==){
f[]++;
qwq=max(qwq,);
f[]++;
f[]=;
}
bool quq=true;
do{
quq=false;
for (int i=;i<=qaq;i++){
if (f[i]>=){
quq=true;
f[i+]++;
qwq=max(i+,qwq);
f[i-]++;
f[i]--;
f[i]--;
}
}
if (quq) qoq=true;
} while(quq);
} while(qoq); //直到没修改为止
printf("%d ",qwq);
for(int i=;i<=qwq;i++)
printf("%d ",f[i]);
return ;
}

神奇的代码

JZOJ.3769【NOI2015模拟8.14】A+B的更多相关文章

  1. JZOJ【NOIP2013模拟联考14】隐藏指令

    JZOJ[NOIP2013模拟联考14]隐藏指令 题目 Description 在d维欧几里得空间中,指令是一个长度为2N的串.串的每一个元素为d个正交基的方向及反方向之一.例如,d = 1时(数轴) ...

  2. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

  3. JZOJ.5274【NOIP2017模拟8.14】数组

    Description

  4. JZOJ.5275【NOIP2017模拟8.14】水管

    Description

  5. JZOJ.5273【NOIP2017模拟8.14】亲戚

    Description

  6. JZOJ.3777【NOI2015模拟8.17】最短路(shortest)

    Description        小Y最近学得了最短路算法,一直想找个机会好好练习一下.话虽这么说,OJ上最短路的题目都被他刷光了.正巧他的好朋友小A正在研究一类奇怪的图,他也想凑上去求下它的最短 ...

  7. [JZOJ]100047. 【NOIP2017提高A组模拟7.14】基因变异

    21 世纪是生物学的世纪,以遗传与进化为代表的现代生物理论越来越多的 进入了我们的视野. 如同大家所熟知的,基因是遗传因子,它记录了生命的基本构造和性能. 因此生物进化与基因的变异息息相关,考察基因变 ...

  8. [JZOJ]100046【NOIP2017提高A组模拟7.14】收集卡片

    Star 计划订购一本将要发行的周刊杂志,但他可不是为了读书,而是-- 集卡. 已知杂志将要发行 N 周(也就是 N 期),每期都会附赠一张卡片.Star 通 过种种途径,了解到 N 期杂志附赠的卡片 ...

  9. JZOJ[3771] 【NOI2015模拟8.15】小 Z 的烦恼

    题目 描述 题目大意 有从111到nnn的数字,每个数字都可以放在一个盒子里(可以不放).一旦放,满足: 如果它不在第mmm个盒子,那么它的两倍一定在后面一个盒子里. 如果它不在第111个盒子,那么它 ...

随机推荐

  1. 动态创建 Log4net 实例

    动态创建log4net 实例 根据业务类型,动态的创建日志实例,将日志写到不同目录.常见的配置文件中统一配置,不能满足需求. 引用log4net nuget安装命令: Install-Package ...

  2. VS创建、安装、调试 windows服务(windows service)

    1.创建 windows服务 项目   文件 -> 新建项目 -> 已安装的模板 -> Visual C# -> windows ,在右侧窗口选择"windows 服 ...

  3. 点滴积累【other】---存储过程修改表的所有字段(sql)

    USE [QG_Mis24] GO /****** Object: StoredProcedure [dbo].[p_set] Script Date: 07/11/2013 17:05:38 *** ...

  4. Codeforces 455C Civilization(并查集+dfs)

    题目链接:Codeforces 455C Civilization 题目大意:给定N.M和Q,N表示有N个城市,M条已经修好的路,修好的路是不能改变的.然后是Q次操作.操作分为两种.一种是查询城市x所 ...

  5. 两个优秀的C标准库源代码

    gnu的基本看不懂,因为套了一层又一层复杂的东西. 我现在能看懂的2个c标准库是openbsd的,还有一个嵌入c的库. https://github.com/openbsd/src/tree/mast ...

  6. Atitit. 衡量项目规模 ----包含的类的数量 .net java类库包含多少类 多少个api方法??

    Atitit. 衡量项目规模 ----包含的类的数量 .net java类库包含多少类 多少个api方法?? 1 framework 4.5 (10万个api)1 2 Jdk8   57M1 3 Gi ...

  7. linux学习笔记29---命令watch

    watch是一个非常实用的命令,基本所有的Linux发行版都带有这个小工具,如同名字一样,watch可以帮你监测一个命令的运行结果,省得你一遍遍的手动运行.在Linux下,watch是周期性的执行下个 ...

  8. python学习笔记1--python简介

    Python翻译中文是蟒蛇.发明人guido喜欢蟒蛇马戏团,故起名python. python发展简史: --CNRI时期.CNRI资助Python发展的重要单位,python1.5版之前的成果大部分 ...

  9. Google Analytics Overview - Google Analytics 概述

    该文档讨论了如何开始使用Google Analytics SDK for Android v3. Before you Begin - 在开始之前 在开始实现SDK之前,请确保有下面的东东: 1.  ...

  10. springmvc中配置servlet初始化类

    <bean  id="InitStart" lazy-init="false" init-method="InitSystem" cl ...