poj 2987(最大权闭合图+割边最少)
题目链接:http://poj.org/problem?id=2987
思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益;从每个负收益点向汇点t连边,容量为收益的相反数;对于i是j的上司,连边i->j,容量为inf。最大收益 = 正收益点权和 - 最小割 = 正收益点权和 - 最大流(胡波涛论文上有证明)。这题的关键是如何在最小割的前提下求出最少的割边数目,可以从源点对残量网络进行一次DFS,每个割都会将源汇隔开,所以从源点DFS下去一定会因为碰到某个割而无法前进,用反证法易知这时遍历过的点数就是S集的最少点数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXN 5555
#define MAXM 5555555
#define inf 1<<30 struct Edge{
int v,cap,next;
}edge[MAXM]; int n,m,NE,vs,vt,NV,num;
int head[MAXN]; void Insert(int u,int v,int cap)
{
edge[NE].v=v;
edge[NE].cap=cap;
edge[NE].next=head[u];
head[u]=NE++; edge[NE].v=u;
edge[NE].cap=;
edge[NE].next=head[v];
head[v]=NE++;
} int level[MAXN],gap[MAXN];
void bfs(int vt)
{
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int>que;
que.push(vt);
while(!que.empty()){
int u=que.front();
que.pop();
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(level[v]<){
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
} int pre[MAXN],cur[MAXN];
long long SAP(int vs,int vt)
{
bfs(vt);
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
long long maxflow=;
int u=pre[vs]=vs,aug=inf;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap);
if(v==vt){
maxflow+=aug;
for(u=pre[v];v!=vs;v=u,u=pre[u]){
edge[cur[u]].cap-=aug;
edge[cur[u]^].cap+=aug;
}
aug=inf;
}
break;
}
}
if(flag)continue;
int minlevel=NV;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==)break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return maxflow;
} bool mark[MAXN];
void dfs(int u)
{
mark[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&!mark[v]){
num++;
dfs(v);
}
}
} int main()
{
int u,v,w;
long long sum,ans;
while(~scanf("%d%d",&n,&m)){
NE=;
memset(head,-,sizeof(head));
vs=,vt=n+,NV=n+;
sum=;
for(int i=;i<=n;i++){
scanf("%d",&w);
if(w>){
Insert(vs,i,w);
sum+=w;
}else
Insert(i,vt,-w);
}
while(m--){
scanf("%d%d",&u,&v);
Insert(u,v,inf);
}
ans=sum-SAP(vs,vt);
num=;
memset(mark,false,sizeof(mark));
dfs(vs);
printf("%d %lld\n",num,ans);
}
return ;
}
poj 2987(最大权闭合图+割边最少)的更多相关文章
- poj 2987 最大权闭合图
Language: Default Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 8744 Accept ...
- hdu 2987最大权闭合图模板类型题
/* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...
- POJ 2987:Firing(最大权闭合图)
http://poj.org/problem?id=2987 题意:有公司要裁员,每裁一个人可以得到收益(有正有负),而且如果裁掉的这个人有党羽的话,必须将这个人的所有党羽都裁除,问最少的裁员人数是多 ...
- POJ 2987 Firing 网络流 最大权闭合图
http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...
- poj 2987 Firing 最大权闭合图
题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...
- POJ 2987 Firing【最大权闭合图-最小割】
题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...
- POJ 2987 Firing(最大权闭合图)
[题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...
- POJ 2987 Firing(最大流最小割の最大权闭合图)
Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...
- POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分
http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...
随机推荐
- LoadRunner监控Tomcat的几种方法
通过JConsole监控Tomcat 1.打开tomcat5的bin目录中的catalina.bat文件,在头部注释部分的后面加上: set JAVA_OPTS=%JAVA_OPTS% -Dcom.s ...
- ZK框架笔记4、通用组件、页面、桌面
组件(component)是一种用户接口(UI)对象,如一个标签.按钮.树. 页面(page)是一个组件的集合. 桌面(desktop)是一个包含相同URL请求的页面. ...
- ZOJ 2604 Little Brackets DP
DP: 边界条件:dp[0][j] = 1 递推公式:dp[i][j] = sum{dp[i-k][j] * dp[k-1][j-1] | 0<k≤i} i对括号深度不超过j的,能够唯一表示为( ...
- C++11: reference_wrapper
https://oopscenities.net/2012/08/09/reference_wrapper/ Look at this piece of code: 1 2 3 4 5 6 7 8 9 ...
- 基于DDD的现代ASP.NET开发框架--ABP系列之1、ABP总体介绍
点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之1.ABP总体介绍 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)” ...
- MOS管基本构造和工作原理
(一)http://v.youku.com/v_show/id_XMTM2NzcwMjE5Ng==.html (二)http://v.youku.com/v_show/id_XMTM2NzcwMjMw ...
- web前端--移动端适配总结
转自:https://segmentfault.com/a/1190000011586301 作者:Devinnn meta标签到底做了什么事情 做过移动端适配的小伙伴一定有遇到过这行代码: < ...
- Event-Souring模式
Event-Sourcing模式使用仅附加存储来记录或描写叙述域中数据所採取的动作,从而记录完整的一系列系列事件,而不是仅存储实体的当前状态.由于存储包括全部的事件,能够用来具体化域对象. Event ...
- printf函数对参数的计算顺序
没想到啊,没想到: printf函数对参数的计算顺序是从右往左的! 我不禁想问一句,这么坑爹的事情,书里居然没有写过.还是我看书不仔细,没有找到?(回头,在自己翻翻那本c语言编程) 于是下面的程序结果 ...
- 查看linux内核和版本信息
一.查看Linux内核版本命令(2种方法): 1.cat /proc/version Linux version 3.10.0_1-0-0-8 (root@xxx) (gcc version 4.8. ...