题目链接:http://poj.org/problem?id=2987

思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益;从每个负收益点向汇点t连边,容量为收益的相反数;对于i是j的上司,连边i->j,容量为inf。最大收益 = 正收益点权和 - 最小割 = 正收益点权和 - 最大流(胡波涛论文上有证明)。这题的关键是如何在最小割的前提下求出最少的割边数目,可以从源点对残量网络进行一次DFS,每个割都会将源汇隔开,所以从源点DFS下去一定会因为碰到某个割而无法前进,用反证法易知这时遍历过的点数就是S集的最少点数。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXN 5555
#define MAXM 5555555
#define inf 1<<30 struct Edge{
int v,cap,next;
}edge[MAXM]; int n,m,NE,vs,vt,NV,num;
int head[MAXN]; void Insert(int u,int v,int cap)
{
edge[NE].v=v;
edge[NE].cap=cap;
edge[NE].next=head[u];
head[u]=NE++; edge[NE].v=u;
edge[NE].cap=;
edge[NE].next=head[v];
head[v]=NE++;
} int level[MAXN],gap[MAXN];
void bfs(int vt)
{
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int>que;
que.push(vt);
while(!que.empty()){
int u=que.front();
que.pop();
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(level[v]<){
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
} int pre[MAXN],cur[MAXN];
long long SAP(int vs,int vt)
{
bfs(vt);
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
long long maxflow=;
int u=pre[vs]=vs,aug=inf;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap);
if(v==vt){
maxflow+=aug;
for(u=pre[v];v!=vs;v=u,u=pre[u]){
edge[cur[u]].cap-=aug;
edge[cur[u]^].cap+=aug;
}
aug=inf;
}
break;
}
}
if(flag)continue;
int minlevel=NV;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==)break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return maxflow;
} bool mark[MAXN];
void dfs(int u)
{
mark[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&!mark[v]){
num++;
dfs(v);
}
}
} int main()
{
int u,v,w;
long long sum,ans;
while(~scanf("%d%d",&n,&m)){
NE=;
memset(head,-,sizeof(head));
vs=,vt=n+,NV=n+;
sum=;
for(int i=;i<=n;i++){
scanf("%d",&w);
if(w>){
Insert(vs,i,w);
sum+=w;
}else
Insert(i,vt,-w);
}
while(m--){
scanf("%d%d",&u,&v);
Insert(u,v,inf);
}
ans=sum-SAP(vs,vt);
num=;
memset(mark,false,sizeof(mark));
dfs(vs);
printf("%d %lld\n",num,ans);
}
return ;
}

poj 2987(最大权闭合图+割边最少)的更多相关文章

  1. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  2. hdu 2987最大权闭合图模板类型题

    /* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...

  3. POJ 2987:Firing(最大权闭合图)

    http://poj.org/problem?id=2987 题意:有公司要裁员,每裁一个人可以得到收益(有正有负),而且如果裁掉的这个人有党羽的话,必须将这个人的所有党羽都裁除,问最少的裁员人数是多 ...

  4. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  5. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

  6. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

  7. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  8. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  9. POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分

    http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...

随机推荐

  1. LoadRunner监控Tomcat的几种方法

    通过JConsole监控Tomcat 1.打开tomcat5的bin目录中的catalina.bat文件,在头部注释部分的后面加上: set JAVA_OPTS=%JAVA_OPTS% -Dcom.s ...

  2. ZK框架笔记4、通用组件、页面、桌面

    组件(component)是一种用户接口(UI)对象,如一个标签.按钮.树.         页面(page)是一个组件的集合.         桌面(desktop)是一个包含相同URL请求的页面. ...

  3. ZOJ 2604 Little Brackets DP

    DP: 边界条件:dp[0][j] = 1 递推公式:dp[i][j] = sum{dp[i-k][j] * dp[k-1][j-1] | 0<k≤i} i对括号深度不超过j的,能够唯一表示为( ...

  4. C++11: reference_wrapper

    https://oopscenities.net/2012/08/09/reference_wrapper/ Look at this piece of code: 1 2 3 4 5 6 7 8 9 ...

  5. 基于DDD的现代ASP.NET开发框架--ABP系列之1、ABP总体介绍

    点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之1.ABP总体介绍 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)” ...

  6. MOS管基本构造和工作原理

    (一)http://v.youku.com/v_show/id_XMTM2NzcwMjE5Ng==.html (二)http://v.youku.com/v_show/id_XMTM2NzcwMjMw ...

  7. web前端--移动端适配总结

    转自:https://segmentfault.com/a/1190000011586301 作者:Devinnn meta标签到底做了什么事情 做过移动端适配的小伙伴一定有遇到过这行代码: < ...

  8. Event-Souring模式

    Event-Sourcing模式使用仅附加存储来记录或描写叙述域中数据所採取的动作,从而记录完整的一系列系列事件,而不是仅存储实体的当前状态.由于存储包括全部的事件,能够用来具体化域对象. Event ...

  9. printf函数对参数的计算顺序

    没想到啊,没想到: printf函数对参数的计算顺序是从右往左的! 我不禁想问一句,这么坑爹的事情,书里居然没有写过.还是我看书不仔细,没有找到?(回头,在自己翻翻那本c语言编程) 于是下面的程序结果 ...

  10. 查看linux内核和版本信息

    一.查看Linux内核版本命令(2种方法): 1.cat /proc/version Linux version 3.10.0_1-0-0-8 (root@xxx) (gcc version 4.8. ...