Building roads

Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 30 Accepted Submission(s): 12
 
Problem Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

 
Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

 
Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1. 
 
Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
 
Sample Output
53246
 
 
Source
POJ Monthly - 2006.01.22 - zhucheng
 

题意:

有n个仓库,两个中转站s1,s2,要求每个农场要么和S1场地连接要么和S2场地连接,且每个农场之间的连接距离的最大值最小 ,有a对仓库不能连同一个中转站,b对仓库必须连同一个中转站。

代码:

/*
二分枚举最大距离L,判断一下每个农场可连接的场地(以下的连边表示,a表示和S1连接,!a表示和S2连接)
(前提是dis[a][s1/s2]<=L,dis[b][s1/s2]<=L......................)
如果dis[a][S1] + dis[b][S1] > L,那么表明a和b不能同时和S1连接,连边a -> !b, b->!a
如果dis[a][S2] + dis[b][S2] > L,那么表明a和b不能同时和S2连接,连边!a -> b, !b->a
如果dis[a][S1] + dis[b][S2] + dis[S1][S2] > L,那么表明a农场连接S1时,b农场不能连接S2。b农场连接S2时,a农场不能连接S1,连边 a->b, !b->!a
如果dis[a][S2] + dis[b][S1] + dis[S1][S2] > L,那么表明a农场连接S2时,b农场不能连接S1。b农场连接S1时,a农场不能连接S2,连边 !a->!b, b->a 接下来还要处理A中不可连接限制和B种连接限制.
注意:二分范围如果小了会wa的。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
const int maxn=;
int dis[][],x[],y[],likx[],liky[],hatx[],haty[];
/********************** 2-sat模板 **********************/
struct Twosat{
int n;
vector<int> g[maxn*];
bool mark[maxn*];
int s[maxn*],c;
bool dfs(int x){
if(mark[x^]) return false;
if(mark[x]) return true;
mark[x]=true;
s[c++]=x;
for(int i=;i<(int)g[x].size();i++)
if(!dfs(g[x][i])) return false;
return true;
}
void init(int n){
this->n=n;
for(int i=;i<n*;i++) g[i].clear();
memset(mark,,sizeof(mark));
}
void add_clause(int x,int xval,int y,int yval){//这个函数随题意变化
x=x*+xval;
y=y*+yval;
g[x].push_back(y);
}
bool solve(){
for(int i=;i<n*;i+=)
if(!mark[i]&&!mark[i+]){
c=;
if(!dfs(i)){
while(c>) mark[s[--c]]=false;
if(!dfs(i+)) return false;
}
}
return true;
}
};
/*********************** 2-sat模板 ************************/
int main(){
int n,A,B,a,b;
Twosat solver;
while(~scanf("%d%d%d",&n,&A,&B)){
scanf("%d%d%d%d",&x[n],&y[n],&x[n+],&y[n+]);
for(int i=;i<n;i++){
scanf("%d%d",&x[i],&y[i]);
dis[i][n]=dis[n][i]=(fabs(x[i]-x[n])+fabs(y[i]-y[n]));
dis[i][n+]=dis[n+][i]=(fabs(x[i]-x[n+])+fabs(y[i]-y[n+]));
} dis[n][n+]=dis[n+][n]=(fabs(x[n]-x[n+])+fabs(y[n]-y[n+]));
for(int i=;i<A;i++){
scanf("%d%d",&a,&b);
a--;b--;
hatx[i]=a;haty[i]=b;
}
for(int i=;i<B;i++){
scanf("%d%d",&a,&b);
a--;b--;
likx[i]=a;liky[i]=b;
}
int L=,R=,M,ans=-;
while(L<=R){
M=(L+R)/;
solver.init(n);
for(int i=;i<A;i++){
solver.add_clause(hatx[i],,haty[i],);
solver.add_clause(hatx[i],,haty[i],);
solver.add_clause(haty[i],,hatx[i],);
solver.add_clause(haty[i],,hatx[i],);
}
for(int i=;i<B;i++){
solver.add_clause(likx[i],,liky[i],);
solver.add_clause(likx[i],,liky[i],);
solver.add_clause(liky[i],,likx[i],);
solver.add_clause(liky[i],,likx[i],);
}
for(int i=;i<n;i++){
//if(dis[i][n]>M) solver.add_clause(i,0,i,1);
//if(dis[i][n+1]>M) solver.add_clause(i,1,i,0);
for(int j=i+;j<n;j++){
if(dis[i][n]<=M&&dis[j][n]<=M&&dis[i][n]+dis[j][n]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
if(dis[i][n+]<=M&&dis[j][n+]<=M&&dis[i][n+]+dis[j][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
if(dis[i][n]<=M&&dis[j][n+]<=M&&dis[i][n]+dis[j][n+]+dis[n][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,j,);
}
if(dis[i][n+]<=M&&dis[j][n]<=M&&dis[i][n+]+dis[j][n]+dis[n][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
}
}
if(solver.solve()) {R=M-;ans=M;}
else L=M+;
}
printf("%d\n",ans);
}
return ;
}

HDU1815 2-sat+二分的更多相关文章

  1. HDU1815(二分+2-SAT)

    Building roads Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. hdu1815 2sat + 二分 + 建图

    题意:       给你两个总部,s1 ,s2,和n个点,任意两点之间都是通过这个总部相连的,其中有一些点不能连在同一个总部上,有一些点可以连接在同一个总部上,总部和总部之间可以直接连接,就是假如a, ...

  3. HDU1815 Building roads(二分+2-SAT)

    Problem Description Farmer John's farm has N barns, and there are some cows that live in each barn. ...

  4. 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)

    0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...

  5. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  6. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  7. UVALive - 3211 (2-SAT + 二分)

    layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...

  8. hdu3715 2-sat+二分

    Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...

  9. POJ 2749 2SAT判定+二分

    题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...

随机推荐

  1. 王者荣耀交流协会beta冲刺贡献分分配结果

    根据原来约定的(贡献分分配规则){http://www.cnblogs.com/gaoyb348/p/7828523.html} 总共20个任务,一共35分,那么一个任务1.75分. 冉华完成了9个任 ...

  2. oracle数据库之存储函数和过程

    一.引言     ORACLE 提供可以把 PL/SQL 程序存储在数据库中,并可以在任何地方来运行它.这样就叫存储过程或函数.过程和函数统称为 PL/SQL 子程序,他们是被命名的 PL/SQL 块 ...

  3. Uncaught Error: Syntax error, unrecognized expression: |117的js错误

    117指的是js代码在浏览器运行时的出错的行号 var  a="117|117" 前面的错误是由于有特殊符号“|”,用$("txtId"+a).val();去取 ...

  4. lintcode-13-字符串查找

    字符串查找 对于一个给定的 source 字符串和一个 target 字符串,你应该在 source 字符串中找出 target 字符串出现的第一个位置(从0开始).如果不存在,则返回 -1. 说明 ...

  5. iOS- <项目笔记>iOS6 & iOS7屏幕图片适配

    1.为非视网膜\视网膜屏幕分别准备2份图片,比如: 1> 非视网膜 abc.png 2> 视网膜 abc@2x.png 程序检测视网膜屏到会自动替换@2x 2.程序启动图片 * 程序启动过 ...

  6. 【TCP】- TCP协议简介

    转载:https://blog.csdn.net/ningdaxing1994/article/details/73076795 TCP 是互联网核心协议之一,本文介绍它的基础知识. 一.TCP 协议 ...

  7. WIN7使用过360系统急救箱后出现的任务计划程序文件夹删除的办法

    直接进主题(怀疑系统有问题用了下360系统急救箱,用完后发现计划任务多了个360superkiller文件夹,右键直接是删除不了的) 尝试了各种方法都是不爽,突然想到计划任务不是在在系统盘下的一个文件 ...

  8. KindEditor是一套很方便的html编译器插件

    KindEditor是一套很方便的html编译器插件.在这里做一个简单的使用介绍. 首先在官网上下载最新的KindEditor文件(里面有jsp,asp等不同版本文件夹,可以删掉你不需要的版本), 把 ...

  9. Flink中的数据传输与背压

    一图道尽心酸: 大的原理,上游的task产生数据后,会写在本地的缓存中,然后通知JM自己的数据已经好了,JM通知下游的Task去拉取数据,下游的Task然后去上游的Task拉取数据,形成链条. 但是在 ...

  10. 移除 ios 上 input 的默认样式

    input{ -webkit-appearance:none; }