Bzoj 2190 仪仗队(莫比乌斯反演)
题面
题解
看这个题先大力猜一波结论
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
using std::__gcd;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 4e4 + 10;
int n, ret;
bool a[N][N];
int main () {
#ifdef OFFLINE_JUDGE
freopen("233.in", "r", stdin);
freopen("233.out", "w", stdout);
#endif
scanf("%d", &n);
for(int i = 2; i <= n; ++i)
for(int j = 2; j <= n; ++j) {
int tmp = __gcd(i, j);
int tmpi = i / tmp, tmpj = j / tmp;
if(!a[tmpi][tmpj]) ++ret, a[tmpi][tmpj] = true;
}
printf("%d\n", ret + 2);
return 0;
}
然后:
很接近了,仔细一想,应该是:
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
using std::__gcd;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 4e4 + 10;
int n, ret;
bool a[N][N];
int main () {
#ifdef OFFLINE_JUDGE
freopen("233.in", "r", stdin);
freopen("233.out", "w", stdout);
#endif
scanf("%d", &n);
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j) {
int tmp = __gcd(i, j);
if(tmp == 1) ++ret/*, a[tmpi][tmpj] = true*/;
}
printf("%d\n", ret);
return 0;
}
然后过了:
那不就是$Bzoj1101\ Zap$了,直接蒯(注意特判一下$n==1$的情况)
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 4e4 + 10;
int t, n, mu[N], g[N], prime[N], cnt;
long long sum[N]; bool notprime[N];
void getmu(int k) {
mu[1] = 1;
for(int i = 2; i <= k; ++i) {
if(!notprime[i]) prime[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && prime[j] * i <= k; ++j) {
notprime[prime[j] * i] = true;
if(!(i % prime[j])) break;
mu[prime[j] * i] = -mu[i];
}
}
for(int i = 1; i <= k; ++i)
sum[i] = sum[i - 1] + 1ll * mu[i];
}
int main () {
#ifdef OFFLINE_JUDGE
freopen("233.in", "r", stdin);
freopen("233.out", "w", stdout);
#endif
getmu(40000);
read(n); ll ans = n > 1 ? 2 : 0; --n;
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans += (sum[r] - sum[l - 1]) * (n / l) * (n / l);
}
printf("%lld\n", ans);
return 0;
}
Bzoj 2190 仪仗队(莫比乌斯反演)的更多相关文章
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- bzoj 2440 简单莫比乌斯反演
题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 ...
- bzoj 1101 Zap —— 莫比乌斯反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- Bzoj 2818: Gcd(莫比乌斯反演)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- bzoj 2190 仪仗队(欧拉函数)
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2245 Solved: 1413[Submit][Statu ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
随机推荐
- 洛谷 P1044 栈
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
- [Luogu 2590] ZJOI2008 树的统计
[Luogu 2590] ZJOI2008 树的统计 裸树剖不解释. 比板子还简单. #include <algorithm> #include <cstdio> #inclu ...
- async和await关键词用于定义原生的协程
#python为了将语义变得更加明确,就引入了async和await关键词用于定义原生的协程 # async def downloader(url): # return "xxxx" ...
- 洛谷P2901 [USACO08MAR]牛慢跑Cow Jogging
题目描述 Bessie has taken heed of the evils of sloth and has decided to get fit by jogging from the barn ...
- 【转载】VS2013安装需要IE10
因为需要移动办公,需要给笔记本搭建编程环境.安装VS2013时遇到了小麻烦,提示我,需要安装IE10. 然后我很听话的按照提供的超链接,到了官网,下载了最新的IE11,然后安装,结果告诉我下载的IE版 ...
- POj 2104 K-th Number (分桶法+线段树)
题目链接 Description You are working for Macrohard company in data structures department. After failing ...
- 如何免费上传4G以上大文件至百度云网盘
百度云网盘的容量高达2048G,因而如今使用百度云网盘的用户也越来越多, 但是百度云中如果要上传超过4G的大文件,必须要升级VIP才行,但这需要收费.那么,超过4G以上的大文件我们该怎样上传到百度云呢 ...
- 表格td内容超出宽度显示... table-layout: fixed;
td宽度用百分比固定好的时候,即使设置了 white-space:nowrap;/*文本不会换行,在同一行显示*/ overflow:hidden;超出隐藏 text-overflow:ellipsi ...
- C++转换构造函数和隐式转换函数 ~ 转载
原文地址: C++转换构造函数和隐式转换函数 用转换构造函数可以将一个指定类型的数据转换为类的对象.但是不能反过来将一个类的对象转换为一个其他类型的数据(例如将一个Complex类对象转换成doubl ...
- mysql 设置字符集
可以用:show create table table_name查看建表信息 也可用: show create database database_name查看建库信息 mysql> creat ...