http://www.lydsy.com/JudgeOnline/problem.php?id=4572

轮廓线DP:设\(f(i,j,S,x,y)\)。

\(S\)表示\((i,1)\)到\((i,j)\)和\((i-1,j+1)\)到\((i-1,m)\)的长度为m的轮廓线上与每个位置作为末位是否与第一个串匹配的状态。

\(x,y\)分别表示\((i,j)\)这个位置作为末位与第一/二个串kmp到了哪个位置。

\(x,y\)取值范围是\([0,c)\),因为当\(x,y\)其一取到c时,这个状态主要考虑对下一个位置上状态的贡献,所以会沿着失配指针往前跳一个继续匹配,不如把\(x/y=c\)的状态和\(x/y=fail[c]\)的状态压在一起。

注意有的连通性状压轮廓线长度为m+1,这个不关心8联通,所以长度为m。

又因为\(S\)的前\(c-1\)位一定是0,可以不记录这几位,所以S的长度是\(m-c+1\)。

时间复杂度\(O(nm2^{m-c+1}c^2)\)。

注意滚动数组一定要全部清空!

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll; const int mo = 1000000007; int n, m, c, q, r1[10], r2[10], fail1[10], fail2[10];
int f[1 << 12][6][6], g[1 << 12][6][6], t1[10][10], t2[10][10];
char c1[10], c2[10]; int change(int S, int tmp, int mark) {
if (tmp < 0) return S;
return S ^ ((mark ^ ((S >> tmp) & 1)) << tmp);
} int ipow(int a, int b) {
int ret = 1, w = a;
while (b) {
if (b & 1) ret = 1ll * ret * w % mo;
w = 1ll * w * w % mo;
b >>= 1;
}
return ret;
} int main() {
scanf("%d%d%d%d", &n, &m, &c, &q);
int ans_tot = ipow(3, n * m);
while (q--) {
scanf("%s%s", c1 + 1, c2 + 1);
for (int i = 1; i <= c; ++i) {if (c1[i] == 'W') r1[i] = 1; if (c1[i] == 'B') r1[i] = 2; if (c1[i] == 'X') r1[i] = 0;}
for (int i = 1; i <= c; ++i) {if (c2[i] == 'W') r2[i] = 1; if (c2[i] == 'B') r2[i] = 2; if (c2[i] == 'X') r2[i] = 0;} int p = 0;
for (int i = 2; i <= c; ++i) {
while (p && r1[p + 1] != r1[i]) p = fail1[p];
fail1[i] = r1[p + 1] == r1[i] ? ++p : 0;
}
p = 0;
for (int i = 2; i <= c; ++i) {
while (p && r2[p + 1] != r2[i]) p = fail2[p];
fail2[i] = r2[p + 1] == r2[i] ? ++p : 0;
} for (int i = 0; i < c; ++i)
for (int j = 0; j <= 2; ++j) {
p = i; while (p && r1[p + 1] != j) p = fail1[p];
t1[i][j] = r1[p + 1] == j ? p + 1 : 0;
p = i; while (p && r2[p + 1] != j) p = fail2[p];
t2[i][j] = r2[p + 1] == j ? p + 1 : 0;
} memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
g[0][0][0] = 1;
int bas = (1 << (m - c + 1)) - 1, newx, newy, T;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (j != 1) memcpy(f, g, sizeof(f));
else {
memset(f, 0, sizeof(f));
for (int S = 0; S <= bas; ++S)
for (int x = 0; x < c; ++x)
for (int y = 0; y < c; ++y)
if (g[S][x][y])
(f[S][0][0] += g[S][x][y]) %= mo;
}
memset(g, 0, sizeof(g)); for (int S = 0; S <= bas; ++S)
for (int x = 0; x < c; ++x)
for (int y = 0; y < c; ++y)
if (f[S][x][y])
for (int now = 0; now <= 2; ++now) {
newx = t1[x][now]; newy = t2[y][now];
if (newy == c && j - c >= 0 && ((S >> (j - c)) & 1)) continue;
if (newx == c) T = change(S, j - c, 1);
else T = change(S, j - c, 0);
if (newx == c) newx = fail1[c];
if (newy == c) newy = fail2[c];
(g[T][newx][newy] += f[S][x][y]) %= mo;
}
}
} int ans = ans_tot;
for (int S = 0; S <= bas; ++S)
for (int x = 0; x < c; ++x)
for (int y = 0; y < c; ++y)
((ans -= g[S][x][y]) += mo) %= mo;
printf("%d\n", ans);
}
}

【BZOJ 4572】【SCOI 2016】围棋的更多相关文章

  1. bzoj 4568 [SCOI 2016] 幸运数字

    题目大意 给定一棵\(n\)个点的树,每个点有权值 \(q\)次询问树上路径中 每个点权值可选可不选的最大异或和 \(n\le 2*10^4,q\le 2*10^5,val[i]\le 2^{60}\ ...

  2. [LOJ 2083][UOJ 219][BZOJ 4650][NOI 2016]优秀的拆分

    [LOJ 2083][UOJ 219][BZOJ 4650][NOI 2016]优秀的拆分 题意 给定一个字符串 \(S\), 求有多少种将 \(S\) 的子串拆分为形如 AABB 的拆分方案 \(| ...

  3. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  4. SCOI 2016 萌萌哒

    SCOI 2016 萌萌哒 solution 有点线段树的味道,但是并不是用线段树来做,而是用到另外一个区间修改和查询的利器--ST表 我们可以将一个点拆成\(logN\)个点,分别代表从点\(i\) ...

  5. 【BZOJ 4568】【SCOI 2016】幸运数字

    写了一天啊,调了好久,对拍了无数次都拍不出错来(数据生成器太弱了没办法啊). 错误1:把线性基存成结构体,并作为函数计算,最后赋值给调用函数的变量时无疑加大了计算量导致TLE 错误2:像这种函数(A, ...

  6. BZOJ.4572.[SCOI2016]围棋(轮廓线DP)

    BZOJ 洛谷 \(Description\) 给定\(n,m,c\).\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过.棋盘的每个格子有三种状态. \( ...

  7. 【BZOJ 4569】【SCOI 2016】萌萌哒

    http://www.lydsy.com/JudgeOnline/problem.php?id=4569 用ST表表示所有区间,根据ST表中表示的区间长度种一棵nlogn的树,类似线段树,每个节点的左 ...

  8. 【BZOJ 4571】【SCOI 2016】美味

    http://www.lydsy.com/JudgeOnline/problem.php?id=4571 这道题因为有加法,不能像可持久化trie那样每次判断只判断一个子树,而是在主席树上查询\(\l ...

  9. 【BZOJ 4570】【SCOI 2016】妖怪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4570 对于每个妖怪的两个值,看成二位平面上的一个点的横纵坐标(x,y). 因为只关心a/b,所以设经 ...

随机推荐

  1. application.properties 文件的优先级

    bootstrapProperties #来自configServer的值 commandLineArgs #命令行参数 servletConfigInitParams servletContextI ...

  2. ubuntu 下安装 activate-power-mode

    转自网络 被朋友圈中的atom的activate-power-mode 震撼到了,于是想试试. 步骤如下 首先安装atom: sudo add-apt-repository ppa:webupd8te ...

  3. CentOS7安装MySQL5.7以及修改密码

    CentOS7安装mysql [root@bd005 ~]# wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch. ...

  4. 2017-2018-1 20179205《Linux内核原理与设计》第三周作业

    <Linux内核原理与分析>第三周作业 教材学习总结 第三章 进程管理 进程是Unix操作系统抽象概念中最基本的一种,是正在执行的程序代码的实时结果:线程,是在进程中活动的对象.而Linu ...

  5. vue路由-基础

    安装 1.直接下载 / CDN https://unpkg.com/vue-router/dist/vue-router.js 在 Vue 后面加载 vue-router,它会自动安装的: <s ...

  6. 從 kernel source code 查出 版本號碼

    kernel/Makefile 1 VERSION = 4 2 PATCHLEVEL = 4 3 SUBLEVEL = 21 4 EXTRAVERSION = 5 NAME = Blurry Fish ...

  7. FIS3 大白话【一】

    1.fis3可以用fis.set进行一些全局的配置,包括忽略文件.文件后缀处理类型.源码过滤等等,用fis3.get可以得到配置信息,详见: http://fis.baidu.com/fis3/doc ...

  8. 【bzoj4868】期末考试

    我还第一次见到省选考三分……? #include<bits/stdc++.h> #define N 200005 using namespace std; typedef long lon ...

  9. 图论-最近公共祖先-离线Tarjan算法

    有关概念: 最近公共祖先(LCA,Lowest Common Ancestors):对于有根树T的两个结点u.v,最近公共祖先表示u和v的深度最大的共同祖先. Tarjan是求LCA的离线算法(先存储 ...

  10. 23:django 信号(signal)

    django包含了一个“信号分配器”使得当一些动作在框架的其他地方发生的时候,解耦的应用可以得到提醒.通俗来讲,就是一些动作发生的时候,信号允许特定的发送者去提醒一些接受者,这是特别有用的设计因为有些 ...