51nod1245 Binomial Coefficients Revenge
第1行:一个数T,表示输入的测试数量(1 <= T <= 5000)
第2 - T + 1行:每行2个数,M和P,中间用空格分隔(2 <= M, P <= 10^18)
输出共T行,每行若干个数,中间用空格分隔,对应组合数的数量。
3
4 5
6 3
10 2
5
3 4
4 4 1 2
数学 kummer定理 数位DP
又是奇怪的定理题
kummer定理:设m,n为正整数,p为素数,则C(下m+n上m)含p的幂次等于m+n在p进制下的进位次数。
设$ f[i][j][0/1] $表示当前考虑了低i位,已有的幂次为j(即已经进位j次),当前位是否大于n。
然后就可以愉快(并不)地数位DP了
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
LL read(){
LL x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*-''+ch;ch=getchar();}
return x*f;
}
int n;
LL m,P;
int a[mxn];
LL f[mxn][mxn][];
void solve(){
n=;
LL bas=m;
while(m){
a[++n]=m%P;
m/=P;
}
f[][][]=;
int i,j;
for(i=;i<=n;i++){
for(j=;j<=i;j++){
f[i][j][]=f[i-][j][]*(a[i]+)+(j?f[i-][j-][]*a[i]:);
f[i][j][]=f[i-][j][]*(P-a[i]-)+(j?f[i-][j-][]*(P-a[i]):);
}
}
LL now=;
for(i=;i>=;i++){
printf("%lld ",f[n][i][]);
now+=f[n][i][];
if(now>bas-)break;
}
puts("");
return;
}
int main(){
int i,j;
int T=read();
while(T--){
m=read();P=read();
solve();
}
return ;
}
51nod1245 Binomial Coefficients Revenge的更多相关文章
- 51nod 1245 Binomial Coefficients Revenge
Description C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍 ...
- 【51nod 1245】Binomial Coefficients Revenge
题目大意 C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p ...
- UVA 1649 Binomial coefficients
https://vjudge.net/problem/UVA-1649 题意: 输入m,求所有的C(n,k)=m m<=1e15 如果枚举n,那么C(n,k)先递增后递减 如果枚举k,那么C(n ...
- UVa 1649 Binomial coefficients 数学
题意: \(C(n, k) = m(2 \leq m \leq 10^{15})\),给出\(m\)求所有可能的\(n\)和\(k\). 分析: 设\(minK = min(k, n - k)\),容 ...
- UVA - 1649 Binomial coefficients (组合数+二分)
题意:求使得C(n,k)=m的所有的n,k 根据杨辉三角可以看出,当k固定时,C(n,k)是相对于n递增的:当n固定且k<=n/2时,C(n,k)是相对于k递增的,因此可以枚举其中的一个,然后二 ...
- Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic numbers
链接:http://pan.baidu.com/s/1eSNkz4Y
- 99 Lisp Problems 列表处理(P1~P28)
L-99: Ninety-Nine Lisp Problems 列表处理类问题的解答,用Scheme实现,首先定义几个在后续解题中用到的公共过程: ; common procedure (define ...
- UVA10375 Choose and divide 质因数分解
质因数分解: Choose and divide Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %l ...
- 【AtCoder】ARC095 C-F题解
我居然每道题都能想出来 虽然不是每道题都能写对,debug了很久/facepalm C - Many Medians 排序后前N/2个数的中位数时排序后第N/2 + 1的数 其余的中位数都是排序后第N ...
随机推荐
- C++与C#数据类型对应关系总结
https://blog.csdn.net/u010159842/article/details/51720458 添加: 1.c++参数含有&,c#也需要用ref关键字. 2.在c++中声明 ...
- 对编码内容多次UrlDecode
对编码内容多次UrlDecode,并不会影响最终结果. 尝试阅读了微软的源代码,不过不容易读懂. 网址:https://referencesource.microsoft.com/#System/ne ...
- button type=“submit”
写js遇到任何怪异的行为 一定要先看看是不是submit搞的鬼. 函数内部最后总是返回 return false; 也是一个好的习惯
- iOS开发应用程序生命周期
各个程序运行状态时代理的回调: - (BOOL)application:(UIApplication *)application willFinishLaunchingWithOptions:(NSD ...
- RXSwift--登录注册那点事
在iOS学习中登录注册是一个万能的可以拿出来实战的demo.接下来我们就从登录开始入手,PS:如果你对RXSwift中的概念和一些常用的函数不清楚可以参考这篇文章(可能打开比较慢请耐心等待).开始直接 ...
- alpha阶段个人总结(201521123031林庭亦)
一.个人总结 第一部分:硬的问题 第二部分:软的问题,在成长路上学到了什么? 1 当你看到不靠谱的设计.糟糕的代码.过时的文档和测试用例的时候,不要想 "既然别人的代码已经这样了,我的代码也 ...
- VMbox复制虚拟机后网卡问题-bring up interface eth0:Device eth0 does not seem to be present
1.使用 ifconfig -a 查看mac地址 eg:HWaddr:08:00:29:B2:2B 2.vi /etc/sysconfig/network-scripts/ifcfg-eth0 将 ...
- 使用WCF上传数据
通过传递Stream对象来传递大数据文件,但是有一些限制: 1.只有 BasicHttpBinding.NetTcpBinding 和 NetNamedPipeBinding 支持传送流数据. 2. ...
- JAVA IDE IntelliJ IDEA使用简介(二)—之基本操作
一.在编辑器中打开文件 1.可以使用下面的几种方式打开project内的文件进行编辑 (·)在project窗口中双击需要编辑的文件. (·)在project窗口选择需要编辑的文件,按F4 ( ...
- BZOJ4866 Ynoi2017由乃的商场之旅(莫队)
显然能重排为回文串相当于出现次数为奇数的字母不超过一个.考虑莫队,问题在于如何统计添加/删除一位的贡献.将各字母出现次数奇偶性看做二进制数,做一个前缀和一个后缀和.在右端添加一位时,更新区间的前缀.后 ...