Description

在2016年,佳媛姐姐喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题
,需要你来帮助他。这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排
序分为两种:1:(0,l,r)表示将区间[l,r]的数字升序排序2:(1,l,r)表示将区间[l,r]的数字降序排序最后询问第q
位置上的数字。

Input

输入数据的第一行为两个整数n和m。n表示序列的长度,m表示局部排序的次数。1 <= n, m <= 10^5第二行为n个整
数,表示1到n的一个全排列。接下来输入m行,每一行有三个整数op, l, r, op为0代表升序排序,op为1代表降序
排序, l, r 表示排序的区间。最后输入一个整数q,q表示排序完之后询问的位置, 1 <= q <= n。1 <= n <= 10^5
,1 <= m <= 10^5
 

Output

输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。

Sample Input

6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3

Sample Output

5
————————————————————————————————
二分p位置的值,把大于mid的数改为1,小于等于mid的数改为0,
变成01串后就可以用线段树实现排序了,像降序升序什么的操作就把1和0各堆到一边就可以辣
排序后如果p的位置上的数为0,说明答案比mid小,如果为1,说明答案比mid大。
至于为什么可以用二分呢
你想如果p位置上是1,说明mid较小,v[p]>mid,所以把v[p]给标记成了1。
如果p位置上是0,就是把v[p]<=mid,所以把v[p]标记成了0,
但是这样还有一些大于v[p]的位置也是0,所以继续往小的地方逼近答案。
满足单调所以就可以这么写辣
#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=5e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int p,n,m,v[M];
int lx[M],rx[M],op[M];
int L,R,mx;
struct pos{int s,h[];}tr[M];
void up(int x){tr[x].s=tr[x<<].s+tr[x<<^].s;}
void down(int x,int l,int r){
if(l==r) return ;
int ls=x<<,rs=x<<^,mid=(l+r)>>;
if(tr[x].h[]){
tr[x].h[]=;
tr[ls].h[]=tr[rs].h[]=;
tr[ls].s=tr[rs].s=;
tr[ls].h[]=tr[rs].h[]=;
}
else if(tr[x].h[]){
tr[x].h[]=; tr[ls].h[]=tr[rs].h[]=;
tr[ls].s=mid-l+; tr[rs].s=r-mid;
tr[ls].h[]=tr[rs].h[]=;
}
}
void build(int x,int l,int r){
tr[x].h[]=tr[x].h[]=;
if(l==r){
tr[x].s=(v[l]>mx);
return ;
}
int mid=(l+r)>>;
build(x<<,l,mid);
build(x<<^,mid+,r);
up(x);
}
void modify(int x,int l,int r,int v){
if(L<=l&&r<=R){
tr[x].h[v]=;
tr[x].h[v^]=;
tr[x].s=(r-l+)*v;
return ;
}
down(x,l,r);
int mid=(l+r)>>;
if(L<=mid) modify(x<<,l,mid,v);
if(R>mid) modify(x<<^,mid+,r,v);
up(x);
}
int query(int x,int l,int r){
if(L<=l&&r<=R) return tr[x].s;
down(x,l,r);
int mid=(l+r)>>,sum=;
if(L<=mid) sum+=query(x<<,l,mid);
if(R>mid) sum+=query(x<<^,mid+,r);
return sum;
}
bool check(int k){
mx=k; build(,,n);
for(int i=;i<=m;i++){
L=lx[i]; R=rx[i];
int ly=query(,,n);
if(op[i]){
if(ly) L=lx[i],R=lx[i]+ly-,modify(,,n,);
if(lx[i]+ly<=rx[i]) L=lx[i]+ly,R=rx[i],modify(,,n,);
}
else{
if(lx[i]<=rx[i]-ly) L=lx[i],R=rx[i]-ly,modify(,,n,);
if(ly) L=rx[i]-ly+,R=rx[i],modify(,,n,);
}
}
L=R=p;
return !query(,,n);
}
int main(){
n=read(); m=read();
for(int i=;i<=n;i++) v[i]=read();
for(int i=;i<=m;i++) op[i]=read(),lx[i]=read(),rx[i]=read();
p=read();
int l=,r=n;
while(l<r){
int mid=(l+r)>>;
if(check(mid)) r=mid;
else l=mid+;
}printf("%d\n",l);
return ;
}

bzoj 4552: [Tjoi2016&Heoi2016]排序——二分+线段树的更多相关文章

  1. 【BZOJ4552】[Tjoi2016&Heoi2016]排序 二分+线段树

    [BZOJ4552][Tjoi2016&Heoi2016]排序 Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ...

  2. bzoj 4552 [Tjoi2016&Heoi2016]排序 (二分答案 线段树)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4552 题意: 给你一个1-n的全排列,m次操作,操作由两种:1.将[l,r]升序排序,2 ...

  3. BZOJ 4552 [Tjoi2016&Heoi2016]排序 | 二分答案 线段树

    题目链接 题面 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  4. [bzoj4552][Tjoi2016&Heoi2016]排序-二分+线段树

    Brief Description DZY有一个数列a[1..n],它是1∼n这n个正整数的一个排列. 现在他想支持两种操作: 0, l, r: 将a[l..r]原地升序排序. 1, l, r: 将a ...

  5. bzoj 4552 [Tjoi2016&Heoi2016]排序——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案,把 >= mid 的设成1.< mid 的设成0,之后排序就变成 ...

  6. BZOJ 4552: [Tjoi2016&Heoi2016]排序

    4552: [Tjoi2016&Heoi2016]排序 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 579  Solved: 322[Sub ...

  7. BZOJ 4552: [Tjoi2016&Heoi2016]排序 线段树 二分

    目录 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 update 10.6 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 /* //fang zhi ...

  8. bzoj 4552: [Tjoi2016&Heoi2016]排序【二分+线段树】

    二分值mid,然后把>=mid的赋值为1,其他赋值为0,每次排序就是算出区间内01的个数,然后分别把0和1放到连续的一段内,这些都可以用线段树来维护 二分的判断条件是操作完之后q位置上是否为1 ...

  9. BZOJ 4552 [Tjoi2016&Heoi2016]排序 ——线段树 二分答案

    听说是BC原题. 好题,二分答案变成01序列,就可以方便的用线段树维护了. 然后就是区间查询和覆盖了. #include <map> #include <cmath> #inc ...

随机推荐

  1. 算法与数据结构实验题 6.3 search

    ★实验任务 可怜的 Bibi 刚刚回到家,就发现自己的手机丢了,现在他决定回头去搜索 自己的手机. 现在我们假设 Bibi 的家位于一棵二叉树的根部.在 Bibi 的心中,每个节点 都有一个权值 x, ...

  2. ZOJ 1909 I-Square

    https://vjudge.net/contest/67836#problem/I Given a set of sticks of various lengths, is it possible ...

  3. 单行文字溢出和多行文字溢出省略号显示的CSS样式

    单行文字溢出,CSS样式 <h6 style="width:70px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis ...

  4. IIS部署网部常用问题汇总

    1.unrecognized attribute 'targetframework' A: 需要注册.net framework到iis.步骤如下: (1)'Start' -> 'CMD' (2 ...

  5. 使用 Python 操作 Git 版本库 - GitPython

    GitPython 是一个用于操作 Git 版本库的 python 包, 它提供了一系列的对象模型(库 - Repo.树 - Tree.提交 - Commit等) 用于操作版本库中的相应对象. 版本库 ...

  6. 面试:谈谈你对jQuery的理解

    jQuery是一个轻量级的javascript框架,极大的简化了js的编程. 1.首先jQuery提供了强大的元素选择器.用于获取html页面中封装了html元素的jQuery对象.像常见的选择器有: ...

  7. 当重写了 httpservlet重写了GenericServlet的init方法时候 必须显示调用GenericServlet的init方法时候 才能在别的方法(父类创建config实例) 例如 doget里面使用servletContext对象 不重写init 则可以直接使用

  8. iOS-系统 图片、视频 管理控制器UIImagePickerController

        UIImagePickerController 是一个管理系统多媒体文件库(相册)中的图片.视频文件的视图控制器,诞生于iOS4之前,虽然功能不是很完善,我们仍可以用这个视图控制器做一些有创造 ...

  9. 【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  10. Python数据定义

    数据类型: 什么是数据? 在计算机科学中,数据是指所有能输入到计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字字母.符号和模拟量等的统称.现在计算机存储和处 ...