【BZOJ2693】jzptab [莫比乌斯反演]
jzptab
Time Limit: 10 Sec Memory Limit: 512 MB
[Submit][Status][Discuss]
Description
Input
第一行一个 T 表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4 5
Sample Output
HINT
T <= 10000
N, M<=10000000
Solution
我们先根据BZOJ2154运用莫比乌斯反演推到一个式子,然后优化求解:
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = ; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int f[ONE];
s64 Ans,sum[ONE]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getf(int MaxN)
{
f[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, f[i] = (-(s64)i*i%MOD+i+MOD)%MOD;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
f[i * prime[j]] = (s64)f[i] * prime[j] % MOD;
break;
}
f[i * prime[j]] = (s64)f[i] * f[prime[j]] % MOD;
}
}
for(int i=; i<=MaxN; i++)
sum[i] = (sum[i-] + f[i]) % MOD;
} s64 Sum(int n,int m)
{
return ((s64)n*(n+)/%MOD) * ((s64)m*(m+)/%MOD) % MOD;
} void Solve()
{
n=get(); m=get();
if(n > m) swap(n,m);
Ans = ;
for(int i=, j=; i<=n; i=j+)
{
j = min(n/(n/i), m/(m/i));
Ans += Sum(n/i,m/i) * ((s64)sum[j] - sum[i-] + MOD) % MOD;
Ans %= MOD;
}
printf("%lld\n",Ans);
} int main()
{
Getf(ONE-);
T=get();
while(T--)
Solve();
}
【BZOJ2693】jzptab [莫比乌斯反演]的更多相关文章
- BZOJ2693: jzptab(莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2068 Solved: 834[Submit][Status][Discuss] Descripti ...
- bzoj2693 jzptab 莫比乌斯反演|题解
Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
随机推荐
- C语言 内存分配 地址 指针 数组 参数 实例解析
. Android源码看的鸭梨大啊, 补一下C语言基础 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/detai ...
- object-oriented第二次作业(1)
1001.A+B F Format(20) 我的代码 题目看完,感觉挺简单的,就直接开始写代码了. 我把加起来后的数字的每位数用数组存起来,特判一下0和负数的情况,然后再一位位输出,遇到该输逗号的时候 ...
- centOS 6.5命令方式配置静态IP
想自己做个centOS玩一下,然后通过FTP访问操作,首先查看是否开启了SSH,命令如下: rpm -qa | grep ssh 这个时候看到的是centOS的ssh已经打开!要是通过FTP工具访问还 ...
- react-event-pooling
react-event-pooling 事件池 https://codesandbox.io/s/3xp4y9zp7q https://reactjs.org/docs/events.html#eve ...
- [剑指Offer] 39.平衡二叉树
题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. class Solution { public: int Get_Height(TreeNode* root) { if(root == NU ...
- Ajax在jQuery中的应用(加载异步数据、请求服务器数据)
加载异步数据 jQuery中的load()方法 load(url,[data],[callback]) url:被加载的页面地址 [data]:可选项表示发送到服务器的数据,其格式为 key/valu ...
- SpringBoot JDBC/AOP
JDBC 工程结构: pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmln ...
- 【bzoj5089】最大连续子段和 分块+单调栈维护凸包
题目描述 给出一个长度为 n 的序列,要求支持如下两种操作: A l r x :将 [l,r] 区间内的所有数加上 x : Q l r : 询问 [l,r] 区间的最大连续子段和. 其中,一 ...
- Give NetScaler a “Tune-Up”
Give NetScaler a “Tune-Up” https://www.citrix.com/blogs/2014/10/21/give-netscaler-a-tune-up/ To Opti ...
- [洛谷P4592][TJOI2018]异或
题目大意:有一棵$n$个点的树,第$i$个点权值为$w_i$,有两种操作: $1\;x\;y:$询问节点$x$的子树中与$y$异或结果的最大值 $2\;x\;y\;z:$询问路径$x$到$y$上点与$ ...