好zz啊我……(;д;)

  首先我们可以删掉所有只有黑色节点的子树(一定不会遍历到), 且注意到每一个点你一定只会经过一遍。然后又考虑如果起点和终点相同,那么总次数实际上已经固定了:就是遍历整棵树(每一条边都需要经过两次),以及各点需要的改变颜色的额外花费。这个是可以愉快地 \(O(n)\) 统计的。再想起点和终点不相同的情况呢?其实就是可以让一个节点到一个叶子节点所经过的次数减少一次。一个本来需要额外花费的点,现在少经过了一次,既少走了一条路,又少改了一次颜色;而本来不需要的点, 少走的路和改变颜色的花费抵消。我们给他们赋予权值表示可以节省的时间,这让我们的问题转化为:如何找到一条权值最大的链,且链的端点中有一个是叶子结点?

  我们dp一下,因为一条路径一定由一条经过了叶子节点的路径和一条不一定经过了叶子结点的路径组成,这样找出最大的就可以了。

#include <bits/stdc++.h>
using namespace std;
#define maxn 100005
#define INF 99999999
int n, root, Ans, ans, C[maxn], mark[maxn];
int degree[maxn], dp1[maxn], dp2[maxn];
int val[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn * ], last[maxn * ], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void dfs(int u, int fa)
{
mark[u] = C[u];
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa) continue;
dfs(v, u);
if(!mark[v]) ++ degree[u], ++ degree[v];
mark[u] &= mark[v];
}
} void dfs2(int u, int fa)
{
int mx1 = , mx2 = ; bool flag = ;
Ans += degree[u];
if((degree[u] + C[u]) & ) val[u] = ;
else val[u] = , ++ Ans;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa || mark[v]) continue;
flag = ; dfs2(v, u);
ans = max(ans, max(dp1[v] + mx2 + val[u], dp2[v] + mx1 + val[u]));
mx1 = max(dp1[v], mx1), mx2 = max(dp2[v], mx2);
}
dp1[u] = mx1 + val[u], dp2[u] = flag ? mx2 + val[u] : -INF;
} int main()
{
n = read();
for(int i = ; i < n; i ++)
{
int x = read(), y = read();
E1.add(x, y);
}
for(int i = ; i <= n; i ++)
{
char c; cin >> c;
if(c == 'B') C[i] = ;
else root = i;
}
if(!root) { puts(""); return ; }
dfs(root, ); dfs2(root, );
printf("%d\n", Ans - ans);
return ;
}

【题解】Atcoder ARC#97 F-Monochrome Cat的更多相关文章

  1. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  2. [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP

    题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...

  3. [题解] Atcoder ARC 142 E Pairing Wizards 最小割

    题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...

  4. [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学

    题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...

  5. [atcoder contest 010] F - Tree Game

    [atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...

  6. [题解] Atcoder Regular Contest ARC 147 A B C D E 题解

    点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...

  7. 【题解】Atcoder ARC#90 F-Number of Digits

    Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...

  8. 【题解】Atcoder ARC#94 F-Normalization

    再次膜拜此强题!神级性质之不可能发现系列收藏++:首先,对于长度<=3的情况,我们采取爆搜答案(代码当中是打表).对于长度>=4的情况,则有如下几条玄妙的性质: 首先我们将 a, b, c ...

  9. 【Atcoder】ARC 080 F - Prime Flip

    [算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...

随机推荐

  1. Java实现邮件发送

      概述 Spring Boot下面整合了邮件服务器,使用Spring Boot能够轻松实现邮件发送:整理下最近使用Spring Boot发送邮件和注意事项: Maven包依赖 <depende ...

  2. C#防止程序重新运行

    //禁止重复运行 bool ret; Mutex mutex = new Mutex(true, Application.ProductName, out ret); if (ret) { Appli ...

  3. springBoot 中webSocket 应用一

    <html> <head> <meta charset="UTF-8"> <title>websocket测试</title& ...

  4. jQuery File Upload 文件上传插件使用一 (最小安装 基本版)

    jQuery File Upload 是一款非常强大的文件上传处理插件,支持多文件上传,拖拽上传,进度条,文件验证及图片音视频预览,跨域上传等等. 可以说你能想到的功能它都有.你没想到的功能它也有.. ...

  5. 初试Docker on Debian on VirtualBox

    一直以来都对Docker如雷贯耳,很想尝试一下但都被各种忙给耽误了,最近由于项目调试,需要安装 Oracle 和 SQL Server 数据库,但又不想安装到本机系统里,于是下决心啃一下docker这 ...

  6. C# 简单工厂

    如下: public static IList<T> Create<T>(Type type) { if (type == typeof(List<T>)) { r ...

  7. 微信小程序—day05

    小程序云服务器--环境配置 本来想要买腾讯云的云服务器,作为小程序的服务端的.无奈,腾讯云卖的太贵了,比阿里云要贵一倍,想想还是算了. 但是,没有服务端的接受,小程序的一些功能是实现不了的.找了一圈, ...

  8. mysql数据库基本操作命令

    1.登录命令 mysql -u root -p "password" 2.列出所有数据库 show databases; 3.使用数据库 use db_name 4.列出数据库中所 ...

  9. 180709-Java实现获取本机Ip的工具类

    180709-Java实现获取本机Ip的工具类 获取本机Ip算是比较常见的一个需求场景了,比如业务报警,可能就会带上出问题的机器IP,方便直接上去看日志定位问题,那么问题来了,如何获取机器IP呢? I ...

  10. angular-使用iframe做独立页(iframe传值到angular和iframe里请求后台数据)

    这个方法使用过两次.一次是在项目中嵌入一个表达式生成器.因为用别人做好的网页变成组件很难,而且里面用了jq,与angular思想相反不能用.另一次是因为想要单独引用样式.而innerHTML使用的样式 ...