【bzoj1036】[ZJOI2008]树的统计Count 树链剖分+线段树
题目描述
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
输入
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。 对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
输出
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
样例输入
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
样例输出
4
1
2
2
10
6
5
6
5
16
题解
树链剖分模板题,第一次码。。。
树链剖分就是把一棵树拆为一些链来处理,并用数据结构来维护。
通常的剖分方法是按照轻重链剖分,每次选取节点最多的子树继承重链,其余视作轻链,重新处理。
通常用线段树维护权值。
查询时,如果x和y在同一条链上,那么直接查询,否则一边将x和y往同一条链上靠,一边记录路径上的权值,然后查询。
代码应该不难理解。
#include <cstdio>
#include <algorithm>
using namespace std;
#define inf 0x3fffffff
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
int val[30005] , deep[30005] , si[30005] , fa[30005] , bl[30005] , pos[30005] , tot;
int head[30005] , to[60005] , next[60005] , cnt;
int maxn[120005] , sum[120005] , n;
char str[10];
void add(int x , int y)
{
to[++cnt] =y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
si[x] = 1;
int i , y;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa[x])
{
deep[y] = deep[x] + 1;
fa[y] = x;
dfs1(y);
si[x] += si[y];
}
}
}
void dfs2(int x , int c)
{
int k = 0 , i , y;
pos[x] = ++tot;
bl[x] = c;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(deep[y] > deep[x] && si[y] > si[k])
k = y;
}
if(k != 0)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(deep[y] > deep[x] && y != k)
dfs2(y , y);
}
}
}
void pushup(int x)
{
sum[x] = sum[x << 1] + sum[x << 1 | 1];
maxn[x] = max(maxn[x << 1] , maxn[x << 1 | 1]);
}
void update(int p , int c , int l , int r , int x)
{
if(l == r)
{
sum[x] = maxn[x] = c;
return;
}
int mid = (l + r) >> 1;
if(p <= mid)
update(p , c , lson);
else
update(p , c , rson);
pushup(x);
}
int querysum(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
return sum[x];
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid)
ans += querysum(b , e , lson);
if(e > mid)
ans += querysum(b , e , rson);
return ans;
}
int querymaxn(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
return maxn[x];
int mid = (l + r) >> 1 , ans = -inf;
if(b <= mid)
ans = max(ans , querymaxn(b , e , lson));
if(e > mid)
ans = max(ans , querymaxn(b , e , rson));
return ans;
}
int solvesum(int x , int y)
{
int ans = 0;
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]])
swap(x , y);
ans += querysum(pos[bl[x]] , pos[x] , 1 , n , 1);
x = fa[bl[x]];
}
if(pos[x] > pos[y])
swap(x , y);
ans += querysum(pos[x] , pos[y] , 1 , n , 1);
return ans;
}
int solvemaxn(int x , int y)
{
int ans = -inf;
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]])
swap(x , y);
ans = max(ans , querymaxn(pos[bl[x]] , pos[x] , 1 , n , 1));
x = fa[bl[x]];
}
if(pos[x] > pos[y])
swap(x , y);
ans = max(ans , querymaxn(pos[x] , pos[y] , 1 , n , 1));
return ans;
}
int main()
{
int i , x , y , q;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d" , &x , &y);
add(x , y);
add(y , x);
}
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &val[i]);
dfs1(1);
dfs2(1 , 1);
for(i = 1 ; i <= n ; i ++ )
update(pos[i] , val[i] , 1 , n , 1);
scanf("%d" , &q);
while(q -- )
{
scanf("%s%d%d" , str , &x , &y);
switch(str[1])
{
case 'H': val[x] = y; update(pos[x] , y , 1 , n , 1); break;
case 'S': printf("%d\n" , solvesum(x , y)); break;
default: printf("%d\n" , solvemaxn(x , y));
}
}
return 0;
}
【bzoj1036】[ZJOI2008]树的统计Count 树链剖分+线段树的更多相关文章
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- 【bzoj1036】树的统计[ZJOI2008]树链剖分+线段树
题目传送门:1036: [ZJOI2008]树的统计Count 这道题是我第一次打树剖的板子,虽然代码有点长,但是“打起来很爽”,而且整道题只花了不到1.5h+,还是一遍过样例!一次提交AC!(难道前 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- bzoj4034 (树链剖分+线段树)
Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...
- HDU4897 (树链剖分+线段树)
Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
随机推荐
- 使用MATLAB设计FIR滤波器
1. 采用fir1函数设计,fir1函数可以设计低通.带通.高通.带阻等多种类型的具有严格线性相位特性的FIR滤波器.语法形式: b = fir1(n, wn) b = fir1(n, wn ...
- 北京Uber优步司机奖励政策(1月23日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 成都Uber优步司机奖励政策(3月1日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- L010小结后自考题
. 查询2号分区的inode和block的数量和尺寸 . 在lcr文件夹下创建一个a文件夹,然后进入文件夹中,创建3个3层目录,5个1层目录,5个文件 . 滤出a文件夹下的所有一级目录(4种方法) . ...
- InnoDB意向锁和插入意向锁
Preface Last night one buddy in tech wechat group asked "what's intention locks of Inno ...
- mysql索引 b+树
1.B+树基本概念 B+树的语言定义比较复杂,简单的说是为磁盘存取设计的平衡二叉树 网上经典图,黄色p1 p2 p3代表指针,蓝色的代表磁盘,里面包含数据项,第一层17,35,p1就代表小于17的,p ...
- leetcode-累加数(C++)
累加数是一个字符串,组成它的数字可以形成累加序列. 一个有效的累加序列必须至少包含 3 个数.除了最开始的两个数以外,字符串中的其他数都等于它之前两个数相加的和. 给定一个只包含数字 '0'-'9' ...
- ntp服务:实现时间同步
一. 引言 目前的项目为分布式系统,采用dubbo+zookeepe,排查BUG,发现各个服务器的时间不一致,遂网上查找资源,使得时间保持一致. 二. 步骤 1)以第一台服务器为“服务端”,其他台服务 ...
- CsvHelper文档-2读
CsvHelper文档-2读 这个库默认不需要做任何设置就可以很容易的使用它.如果你的类属性名称直接匹配csv的标题名称,那么可以按照下面的实例来用: (以下所有的代码都需要引用using csvhe ...
- 剑指offer-字符串的排列26
题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 输入描述: 输 ...