https://www.lydsy.com/JudgeOnline/problem.php?id=4827

https://www.luogu.org/problemnew/show/P3723

题面见原题。

参考了洛谷一些题解。

先推式子,x数组为a,y数组为b,将b数组倍长后有:

因为c的范围在[-m,m]之间,而m=100,且稍加思考后发现k在1,3,4项中是无用的,所以通过枚举c取得1,3,4项和的最小值。

考虑计算第二项,其实是卷积型,实际上将a数组前移并倒转即可得到:

变成了卷积,FFT即可O(nlogn),本题结束。

(PS:防止我以后看不懂写点东西)

(从n-1枚举到FFT的长度,在之间取得最大值即可)

(至于为什么k可以被忽略,是因为当长度大于n-1时b[k]之前的项相当于乘了个0所以没事。)

(当然我写的时候发现答案对了就交了结果就阴差阳错的AC了:) )

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<queue>
#include<cmath>
using namespace std;
typedef long double dl;
typedef long long ll;
const dl pi=acos(-1.0);
const int N=2e6+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct complex{//定义复数
dl x,y;
complex(dl xx=0.0,dl yy=0.0){
x=xx;y=yy;
}
complex operator +(const complex &b)const{
return complex(x+b.x,y+b.y);
}
complex operator -(const complex &b)const{
return complex(x-b.x,y-b.y);
}
complex operator *(const complex &b)const{
return complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
void FFT(complex a[],int n,int on){
for(int i=,j=n>>;i<n-;i++){
if(i<j)swap(a[i],a[j]);
int k=n>>;
while(j>=k){j-=k;k>>=;}
if(j<k)j+=k;
}
for(int i=;i<=n;i<<=){
complex res(cos(-on**pi/i),sin(-on**pi/i));
for(int j=;j<n;j+=i){
complex w(,);
for(int k=j;k<j+i/;k++){
complex u=a[k],t=w*a[k+i/];
a[k]=u+t;
a[k+i/]=u-t;
w=w*res;
}
}
}
if(on==-)
for(int i=;i<n;i++)a[i].x/=n;
}
complex a[N],b[N];
int n,m;
ll t1=,t2=,t3=,t4=;
inline ll suan(int c){
return (ll)n*c*c+*(t3-t4)*c;
}
int main(){
n=read(),m=read();
for(int i=n-;i>=;i--)a[i].x=read();
for(int i=;i<n;i++)b[i].x=read();
for(int i=;i<n;i++){
t1+=a[i].x*a[i].x;t2+=b[i].x*b[i].x;
t3+=a[i].x;t4+=b[i].x;
} for(int i=n;i<*n;i++)b[i]=b[i-n];
int k=;while(k<n*)k<<=;
FFT(a,k,);FFT(b,k,);
for(int i=;i<k;i++)a[i]=a[i]*b[i];
FFT(a,k,-); ll maxn=,minn=1e18;
for(int i=n-;i<k;i++)maxn=max(maxn,(ll)(a[i].x+0.5));
for(int i=-m;i<=m;i++)
if(suan(i)<minn)minn=suan(i);
printf("%lld\n",t1+t2-*maxn+minn);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4827:[AH2017/HNOI2017]礼物——题解的更多相关文章

  1. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  2. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  3. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  4. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  5. 【BZOJ4827】 [Hnoi2017]礼物

    BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...

  6. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  7. [AH2017/HNOI2017]礼物

    题解: 水题 化简一波式子会发现就是个二次函数再加上一个常数 而只有常数中的-2sigma(xiyi)是随移动而变化的 所以只要o(1)求出二次函数最大值然后搞出sigma(xiyi)就可以了 这个东 ...

  8. 【文文殿下】[AH2017/HNOI2017]礼物

    题解 二项式展开,然后暴力FFT就好了.会发现有一个卷积与c无关,我们找一个最小的项就行了. Tips:记得要倍长其中一个数组,防止FFT出锅 代码如下: #include<bits/stdc+ ...

  9. 【bzoj4827】[Hnoi2017]礼物 FFT

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天 ...

随机推荐

  1. 「专题训练」Boredom(CodeForces Round #260 Div.1 A)

    题意(Codeforces-455A) 给你\(n\)个数,你每次可以选择删除去一个数\(x\)获得\(x\)分,但是所有为\(x+1\)和\(x-1\)的数都得删去.问最大获得分数. 分析 这是一条 ...

  2. 手把手教你封装 Vue 组件,并使用 npm 发布

    Vue 开发插件 开发之前先看看官网的 开发规范 我们开发的之后期望的结果是支持 import.require 或者直接使用 script 标签的形式引入,就像这样: // 这里注意一下包的名字前缀是 ...

  3. lintcode671 循环单词

    循环单词   The words are same rotate words if rotate the word to the right by loop, and get another. Cou ...

  4. JAVA 面试须知

    本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺. 1. Java中的原始数据类型都有哪些, ...

  5. Java VisualVM使用

    Java VisualVM Java VisualVM官网 Java VisualVM介绍 Java VisualVM is a tool that provides a visual interfa ...

  6. 初涉 Deep Drive Dataset

    Berkeley 大学最近推出的针对自动驾驶的街景数据集,号称比 Cityscapes 数据量更大,可泛化性更好. 语义实例分割(Semantic Instance Segmentation) 数据集 ...

  7. opencv-学习笔记(1)常用函数和方法。

    opencv-学习笔记(1)常用函数和方法. cv2.imread(filename,falg) filename是文件名字 flag是读入的方式 cv2.MREAD_UNCHANGED :不进行转化 ...

  8. Cow Contest(最短路floyed传递闭包)

    Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...

  9. 如何重新安装Orchard CMS?

    Orchard CMS安装后,配置文件和数据库保存在App_Data目录中.这个目录是受保护的,是不能通过网址访问到的. 如果要完全重装你的站点,你可以删除此目录中的所有文件,但是最好先备份!删除后重 ...

  10. 在LaTex中插入电路图的方法(插入图片)

    主要的需求是要在文档中插入电路图. 有两种方法,一种是直接在LaTex中绘制电路图,使用的库主要是circ和circuitikz 另一种是在其他软件上绘制电路图,转成特定图像格式后,在Latex中插入 ...