NetScaler VLAN’s Demystified

https://www.citrix.com/blogs/2014/12/29/netscaler-vlans-demystified/

The Citrix NetScaler appliance is an amazingly flexible application delivery controller (ADC). It’s capable of performing both simple and very complex tasks, positioning it solidly for the eighth consecutive year in the Gartner Leaders Quadrant for ADC’s: http://www.citrix.com/news/announcements/oct-2014/citrix-positioned-for-the-eighth-consecutive-year-in-the-leaders.html

Unlike many networking devices the NetScaler uses ‘floating’ IP addresses, which means that any NetScaler-owned IP address can egress any NetScaler interface with the generic default ‘vanilla’ configuration in place.

This may actually be the desired configuration, but if there is a need to ensure that ingress and egress traffic flows out one particular interface on the NetScaler, this can simply be configured by using layer three (L3) VLAN’s to bind IP subnets to specific interfaces. With L3 VLAN’s configured, all traffic destined for a particular network/subnet will be forced out the desired interface.

Note: VLAN’s are actually layer two constructs, but the term L3 VLAN is used to describe the VLAN-to-IP subnet binding occurring.

How Does This All Work?

By default all interfaces are members of Native VLAN 1. That being said, specific to RX and TX, there are a few different rules to understand.

Below shows the structure of a VLAN packet:

Port-Based VLAN’s

Let’s add a new VLAN to the NetScaler (VLAN 10). This new VLAN is created with the following command: ‘add vlan 10’

Then let’s bind interface 10/1 to the newly created VLAN 10 natively. This is accomplished with the following command: ‘bind vlan 10 -ifnum 10/1’

When bound natively, interface 10/1 is removed automatically from VLAN 1, the current native VLAN. It is then added to VLAN 10. When this configuration is implemented the following rules will then apply:

Tagged VLAN’s

Let’s add a tagged VLAN to the NetScaler (VLAN 30). This new VLAN is created with the following command: ‘add vlan 30’

Then let’s bind interface 10/2 to the newly created VLAN 30 as a tagged member. This is accomplished with the following command: ‘bind vlan 30 -ifnum 10/2 –tagged’

When VLAN 30 is bound as a tagged member of interface 10/2, it is kept in VLAN 1 as a native member, but also added to VLAN 30 as a tagged member. When this configuration is implemented the following rules will then apply.

Summary

  • An interface can have only one (hence also referred to as ‘port based’) Native VLAN.
  • Untagged packets arriving on an interface are assumed to have arrived on that Native VLAN.
  • An interface can be part of any number of tagged VLANs.
  • When an interface is bound to a VLAN Natively, its Native VLAN changes from the current one to new one.
  • When an interface is bound to a particular VLAN as a tagged member, it’s just added to the new VLAN as a tagged member.

An overview of the rules are as follows:

The Interface TAGALL Configuration

The TAGALL configuration on the NetScaler is specific only to the interface. The following rules apply when leveraging the TAGALL feature:

Link Aggregation (LA)

Let’s create a new link aggregation channel. This new LA channel is created with the following command: ‘add channel LA/1’

Then let’s bind interfaces 10/1 and 10/2 to the newly created channel with the following command: ‘bind channel LA/1 -ifnum 10/1 10/2’

Then following rules will apply for the default LA channel:

Link Aggregation (LA) and VLANs

Let’s create a new link aggregation channel (LA/2). This new LA channel is created with the following command: ‘add channel LA/2’

Then let’s bind interfaces 10/1 and 10/2 to the newly created channel with the following command: bind channel LA/2 -ifnum 10/1 10/2’ (as referenced previously the VLAN bindings of 10/1 and 10/2 are lost once they are part of an LA channel – unless specifically configured as such as we’ll see in the following example).

We can bind the new LA channel to a new VLAN with the following commands: ‘add vlan 2’ and then ‘bind vlan 2 –ifnum LA/2’

NOTES:

  1. If we unbind interfaces 10/1 and 10/2 (for example) from an LA channel (e.g. ‘unbind channel LA/1 -ifnum 10/1 10/2’) and then remove the channel with the following command: ‘rm channel LA/1’, then interfaces 10/1 and 10/2 will be moved to VLAN 1 as Native members again.
  2. The NetScaler does not have the concept of “trunk ports”, which by default will accept all VLAN IDs and only accept tagged traffic. Further restrictions on which VLANs to accept can be controlled by configuring an ‘allowed list’ of VLAN IDs on a particular interface.

Additional References:

How to Associate an IP Subnet with a NetScaler Interface by Using VLANs:http://support.citrix.com/article/CTX136926

How to Restrict the Management Access to a NetScaler Appliance from a Specific Interface: http://support.citrix.com/article/CTX126038

NetScaler VLAN’s Demystified的更多相关文章

  1. NetScaler SNIPs Bound To An Interface Without A VLAN

    NetScaler SNIPs Bound To An Interface Without A VLAN https://www.citrix.com/blogs/2014/04/09/work-yo ...

  2. hd loadBalanceServer F5 BIG-IP / Citrix NetScaler / Radware / Array / HAProxy /

    s 五.Citrix NetScaler 和 CDN 案例 问题描述: Citrix 10.5.66.9软件版本下,存在计时器bug,此bug会造成CDN长连接回源超过设备默认的180S,会发fin包 ...

  3. Spanning Tree Protocol (STP) in NetScaler Appliance

    Spanning Tree Protocol (STP) in NetScaler Appliance 来源 https://support.citrix.com/article/CTX112341 ...

  4. NetScaler + Wireshark = A Perfect Combination!

    NetScaler + Wireshark = A Perfect Combination! https://www.citrix.com/blogs/2014/05/03/netscaler-wir ...

  5. NetScaler Best Practice With VMAC In A High Availability Configuration

    NetScaler Best Practice With VMAC In A High Availability Configuration https://www.citrix.com/blogs/ ...

  6. SNMP OID Reference - NetScaler 10

    SNMP OID Reference - NetScaler 10 https://docs.citrix.com/content/dam/docs/en-us/netscaler/10/downlo ...

  7. NetScaler Active-Active模式

    NetScaler Active-Active模式 NetScaler Active-Active模式 (此文档基于版本:NS9.3: Build 55.6 nc) By ShingTan Activ ...

  8. Citrix NetScaler HA(高可用性)解析

    Citrix NetScaler HA(高可用性)解析 来源 https://www.iyunv.com/thread-172259-1-1.html 1.1     NetScaler高可用概述 我 ...

  9. Configure a VLAN on top of a team with NetworkManager (nmcli) in RHEL7

    SOLUTION VERIFIED September 13 2016 KB1248793 Environment Red Hat Enterprise Linux 7 NetworkManager ...

随机推荐

  1. == vs === in Javascript

    本文来自网易云社区 作者:魏文庆 如果你只想知道==与===的区别,请直接看总结,当然我更希望您能耐心看完全文.Javascript中用于相等比较的操作符有两个==和===.==我们通常称为" ...

  2. libevent学习一

    常见的异步IO存在的问题:   1.使用 fcntl(fd, F_SETFL, O_NONBLOCK);,为什么在处理上效率不好.       a.在没有数据可读写的时候,循环会不停执行,浪费掉大部分 ...

  3. CentOS 7.2安装11g Grid Infrastructure

      Preface       Oracle claimed that 11g RAC is supported on Redhat Linux 7 and above version,but the ...

  4. jmeter多台压力机测试

    jmeter控制机会自动将脚本发送至压力机 1.控制机配置 jmeter.properties中配置: remote_hosts=ip1:1099,ip2:1022,ip3:1099 将压力机ip+p ...

  5. Siki_Unity_2-1_API常用方法和类详细讲解(下)

    Unity 2-1 API常用方法和类详细讲解(下) 任务101&102:射线检测 射线origin + direction:射线检测:射线是否碰撞到物体 (物体需要有碰撞器),碰撞物体的信息 ...

  6. SSH:远程登陆

    SSH用于计算机之间的加密登录的前提是公钥为真,所以存在中间人攻击中间人攻击:与https协议不同,SSH协议的公钥是没有CA公证的,当对公钥的请求被中间截获时,中间人可以发出伪造公钥干坏事而不被识破 ...

  7. java学习笔记-9.违例差错控制

      1.违例规范是告诉程序员这个方法可能抛出哪些类型的异常.他的格式在方法声明中,位于自变量(参数)列表的后面,如void f() throws tooBig, tooSmall, divZero { ...

  8. javascript打开新窗口

    一.window.open()支持环境: JavaScript1.0+/JScript1.0+/Nav2+/IE3+/Opera3+ 二.基本语法: window.open(pageURL,name, ...

  9. iostat lsof

    转至:http://www.51testing.com/html/48/202848-242043.html 命令总结: 1. top/vmstat 发现 wa%过高,vmstat b >1: ...

  10. 条款02:尽量以const,enum,inline替换#define

    一.概述 尽量少用预处理器——宏替换 二.细节 1. 关于宏替换之常量 旧版本:#define N 10; 新版本:const int n = 10; 比较:#define不被视为语言的一部分,记号名 ...