#include <iostream>
#include <string>
#include <boost/timer.hpp>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/flann/flann.hpp" using namespace std;
using namespace cv; void readme();
string type2str(int type); int main( int argc, char** argv )
{
if( argc != )
{
readme();
return -;
} Mat img_1 = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{
cout<< " --(!) Error reading images " << endl;
return -;
} //-- Step 1: Detect the keypoints using ORB Detector cv::Ptr<cv::ORB> orb = cv::ORB::create(); std::vector<KeyPoint> keypoints_1, keypoints_2; orb->detect( img_1, keypoints_1 );
orb->detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors) Mat descriptors_1, descriptors_2; // descriptor is a cv::Mat, with rows the same as nFeatures, and cols as 32 (8UC1)
orb->compute( img_1, keypoints_1, descriptors_1 );
orb->compute( img_2, keypoints_2, descriptors_2 );
cout << type2str(descriptors_1.type()) << " " << descriptors_1.rows << "*" << descriptors_1.cols << endl;; //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector<DMatch> matches; // the descriptor for FlannBasedMatcher should has matrix element of CV_32F
if( descriptors_1.type()!=CV_32F )
{
descriptors_1.convertTo( descriptors_1, CV_32F );
descriptors_2.convertTo( descriptors_2, CV_32F );
}
matcher.match( descriptors_1, descriptors_2, matches ); double min_dist = min_element( matches.begin(),
matches.end(),
[]( const DMatch& d1, const DMatch& d2 )->double
{
return d1.distance < d2.distance;
} )->distance; cout << min_dist << endl; vector<DMatch> good_matches; for( int i = ; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < max<double>( min_dist*, 60.0 ) )
{
good_matches.push_back( matches[i]);
}
} Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); for( int i = ; i < good_matches.size(); i++ )
{
cout << good_matches[i].queryIdx << " --- " << good_matches[i].trainIdx << endl;
} waitKey(); return ;
} void readme()
{
cout << " Usage: ./ORB_test <img1> <img2>" << endl;
} string type2str(int type)
{
string r; uchar depth = type & CV_MAT_DEPTH_MASK;
uchar chans = + (type >> CV_CN_SHIFT); switch ( depth ) {
case CV_8U: r = "8U"; break;
case CV_8S: r = "8S"; break;
case CV_16U: r = "16U"; break;
case CV_16S: r = "16S"; break;
case CV_32S: r = "32S"; break;
case CV_32F: r = "32F"; break;
case CV_64F: r = "64F"; break;
default: r = "User"; break;
} r += "C";
r += (chans+''); return r;
}

OpenCV 3.2 FlannBasedMatcher的更多相关文章

  1. OpenCV中feature2D——BFMatcher和FlannBasedMatcher

    作者:holybin 原文:https://blog.csdn.net/holybin/article/details/40926315 Brute Force匹配和FLANN匹配是opencv二维特 ...

  2. OpenCV中的神器Image Watch

    Image Watch是在VS2012上使用的一款OpenCV工具,能够实时显示图像和矩阵Mat的内容,跟Matlab很像,方便程序调试,相当好用.跟VS2012配合使用,简直就是一款神器!让我一下就 ...

  3. OpenCV】透视变换 Perspective Transformation(续)

    载分 [OpenCV]透视变换 Perspective Transformation(续) 分类: [图像处理] [编程语言] 2014-05-27 09:39 2776人阅读 评论(13) 收藏 举 ...

  4. [OpenCV] Feature Matching

    得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998 ...

  5. opencv 61篇

    (一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报  分类: OpenCV ...

  6. 3. opencv进行SIFT特征提取

    opencv中sift特征提取的步骤 使用SiftFeatureDetector的detect方法检测特征存入一个向量里,并使用drawKeypoints在图中标识出来 SiftDescriptorE ...

  7. 【OpenCV新手教程之十八】OpenCV仿射变换 &amp; SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  8. OpenCV探索之路(二十一)如何生成能在无opencv环境下运行的exe

    我们经常遇到这样的需求:我们在VS写好的程序,需要在一个没有装opencv甚至没有装vs的电脑下运行,跑出效果.比如,你在你的电脑用opencv+vs2015写出一个程序,然后老师叫你把程序发给他,他 ...

  9. OpenCV探索之路(二十三):特征检测和特征匹配方法汇总

    一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要. ...

随机推荐

  1. WAS缓存问题

    在项目中经常遇见这样的问题:修改应用的配置文件web.xml后,无论重启应用还是重启WebSphere服务器,都不能重新加载web.xml,导致修改的内容无效. 这个问题困扰了我好久,即使删除了${w ...

  2. json查看器

    jsonview: http://www.bejson.com/jsonviewernew/

  3. supervisord的配置

    https://blog.csdn.net/xyang81/article/details/51555473  这位大佬写的很详细  你们可以去参考一下

  4. python中的sum函数.sum(axis=1)

    看起来挺简单的样子,但是在给sum函数中加入参数.sum(a,axis=0)或者是.sum(axis=1) 就有点不解了 在我实验以后发现 我们平时用的sum应该是默认的axis=0 就是普通的相加 ...

  5. java中prepareStatement与createStatement的区别

    首先来看两段代码: 第一个使用createStatement() public void delete( int id){ try { Connection c = DBUtil.getConnect ...

  6. 【luogu P2919 [USACO08NOV]守护农场Guarding the Farm】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2919 1.搜索的时候分清楚全局变量和局部变量的区别 2.排序优化搜索 #include <cstdio ...

  7. 全渠道价值链整合云服务 B2B SOLOMO(组图)

    最近看到>中谈到“全渠道零售”(Omni-channel Retailing),指在互联网和电子商务的当今时代“零售商将能通过各种渠道与顾客互动,包括网站.实体店.服务终端.直邮和目录.呼叫中心 ...

  8. 自动化运维工具Ansible实战(四)常用模块

    转载链接:http://blog.51cto.com/liqingbiao/1962609   Ansible模块按功能分为:云模块.集群模块. 命令模块.数据库模块.文件模块.资产模块.消息模块.监 ...

  9. 阿里云服务器发送邮件失败,25端口被禁用,采用ssl 方式 465端口发送

    /** * 邮件工具类 * User: NZG * Date: 2019/3/8 * Time: 12:25 **/ @Data @Component @Configuration @Configur ...

  10. JS中的“==”与强制类型转换

    JavaScript中有“==”与“===”,那么他们有何区别呢? 对于基本数据类型, ===  (!==)只有当两个变量的类型和值都相等时,才返回true:而 == (!=)则会对变量进行强制类型转 ...