Description

给你一个单调不下降的长度为n的序列,请你找出一个最长的子序列,满足找出的子序列中,\(A_i<=A_{i-1}~\times~2\),其中i为下标,A为找出的子序列。对于一个长度为\(p\)的子序列,\(i~\in~[1,p-1]\)。

Input

两行,第一行是原序列的长度\(n\)

第二行是\(n\)个数,代表原序列中的\(n\)个数。

Output

一行一个数,代表最长的长度

Sample Input

10
1 2 5 6 7 10 21 23 24 49

Sample Output

4

Hint

$ 1\leqn\leq2\cdot10^5 $

Solution

这题做法有好多好多啊……

(下面\(a_i\)代表原序列中第\(i\)个位置)

先考虑除了我以外大家都在用的做法:贪心。

贪心策略:

对于第\(i\)个位置,如果它满足\(a_i<=a_{i-1}~\times~2\)那么就把他加到当前序列的结尾中去,否则把他作为新开一个序列的首个元素继续往后扫。

证明:

证明上述策略即证明选择是连续的。

考虑选择第\(i\)个位置的元素。如果下一个元素是第\(j\)个位置的元素\(j~\neq~i+1\),那么一定满足\(a_j<=a_{i}~\times~2\)。

那么对于\(\forall k \in (i,j)\),因为原序列是单调不下降的,所以满足\(a_k~\leq~a_j\)且\(f_k~\geq~a_i\)。所以一定满足\(a_k<=a_{i}~\times~2\)

由于只选择\(j\)选择\(j\)和\(k\)相比,后者更优,所以选择一定是连续的。证毕。

Code:

注:代码提供感谢@Burnside julao
#include<iostream>
using namespace std;
int n;
int cnt=1;
int maxcnt=-1;
int a[200005];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<n;i++)
{
if(2*a[i]>=a[i+1]) cnt++;
else
{
if(cnt>maxcnt) maxcnt=cnt;
cnt=1;
}
}
if(cnt>maxcnt) maxcnt=cnt;
cout<<maxcnt<<endl;
}

再说说像我这么弱的没想到贪心怎么办= =

拿到这个题的题目描述第一印象觉得这很像一个LIS(最长单调子序列)的题目。所以在考虑进行DP。

设\(f_i\)为以\(i\)位置为结尾的最长序列的长度。考虑状态转移方程为

\(f_i=max\){\(f_j\)}\(+1\),其中\(j\)满足\(a_j~\times~2~\geq~a_i\)。

考虑转移是\(O(n)\)的,难以承受。考虑我们如果知道了最小的\(j\)在哪里,就可以用区间最大值进行转移。发现因为原序列是单调的,所以\(j\)的位置是可以二分的。二分完以后求区间[j.i-1]的最大值加一就是\(f_i\)的答案。

维护区间最大值我们这里选择建一棵十分好写的线段树就解决辣

因为二分\(j\)的复杂度是\(O(logn)\),线段树的复杂度是\(O(logn)\),转移是\(O(1)\)的,共有\(n\)个状态,所以时间复杂度为\(O(nlogn)\),可以通过本题。

Code:

你看这么毒瘤的头文件就知道是我自己写的

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[50];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if (lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) {putchar('-');x=-x;}
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} const int maxn = 200010;
const int maxt = 800010; int n;
int MU[maxn];
int frog[maxt]; int ask(ci,ci,ci,ci,ci);
void change(ci,ci,ci,ci,ci); int main() {
qr(n);
for(rg int i=1;i<=n;++i) qr(MU[i]);
for(rg int i=1;i<=n;++i) {
rg int l=0,r=i,mid=0,_ans=0;
while(l<=r) {
mid=(l+r)>>1;
if((MU[mid]<<1)>=MU[i]) _ans=mid,r=mid-1;
else l=mid+1;
}
if((_ans==0)||(_ans==i)) _ans=1;
else _ans=ask(1,n,1,_ans,i-1)+1;
change(1,n,1,i,_ans);
}
write(ask(1,n,1,1,n),'\n',true);
return 0;
} int ask(ci l,ci r,ci p,ci aiml,ci aimr) {
if(l>r) return 0;
if(l>aimr||r<aiml) return 0;
if(l>=aiml&&r<=aimr) return frog[p];
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
return mmax(ask(l,mid,dp,aiml,aimr),ask(mid+1,r,ddp,aiml,aimr));
} void change(ci l,ci r,ci p,ci aim,ci v) {
if(l>r) return;
if(l>aim||r<aim) return;
if(l==r) {frog[p]=v;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim,v);change(mid+1,r,ddp,aim,v);
frog[p]=mmax(frog[dp],frog[ddp]);
}

考虑优化

毕竟这个复杂度比贪心高了一个log,万一数据出上个1e7就凉了。考虑考虑怎么把它优化到\(O(n)\)。

发现对于每个i,它对应的最小的j的位置是单调不下降的。那么我们可以用单调队列维护[j,i]的区间最大值。这样转移达到时间复杂度被优化到了\(O(n)\),可以面对更大的数据范围。

Code:

我懒得写了

【贪心/DP/单调队列】【CF1029B】Creating the Contest的更多相关文章

  1. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  2. DP+单调队列 codevs 1748 瑰丽华尔兹(还不是很懂具体的代码实现)

    codevs 1748 瑰丽华尔兹 2005年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解       题目描述 Descripti ...

  3. Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列)

    Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列) Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺 ...

  4. 习题:烽火传递(DP+单调队列)

    烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...

  5. (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列

    Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...

  6. 3622 假期(DP+单调队列优化)

    3622 假期 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 黄金 Gold 题目描述 Description 经过几个月辛勤的工作,FJ决定让奶牛放假.假期可以在1-N天内任意选择 ...

  7. BZOJ4560 JLOI2016字符串覆盖(kmp+贪心+状压dp+单调队列)

    首先kmp求出每个子串能放在哪些位置.接下来的两部分贪心和状压都可以,各取比较方便的. 最大值考虑贪心.考虑枚举子串的左端点出现顺序,在此基础上每个子串的位置肯定都应该尽量靠前,有是否与上个子串有交两 ...

  8. BZOJ.2806.[CTSC2012]Cheat(广义后缀自动机 DP 单调队列)

    题目链接 首先二分答案L.然后就是判断能否将原串划分出一些长度不小于L的子串,这些子串要是给定n个串中的某个串的子串,且满足它们的长度之和不小于原串长度的90%. 贪心多长选一段什么的显然不对.老老实 ...

  9. hdu4123(树形dp+单调队列)

    还没有学过RMQ,所以只能用会的单调队列做. Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/3276 ...

随机推荐

  1. jmeter 函数助手

    1.选项,函数助手对话框,打开函数助手 2.使用方法 输入参数,点击生成,可以直接使用(Name of variable in which to store the result (optional) ...

  2. JVM之G1收集器

    Garbage-First,面向服务端的垃圾收集器. 并行与并发:充分利用多核环境减少停顿时间, 分代收集:不需要配合其它收集器 空间整合:整体上看属于标记整理算法,局部(region之间)数据复制算 ...

  3. 关于java使用double还是float

    眼睛一亮在论坛上发现一枚很有价值的评论赶紧抄下来... 记住java一定要用double,更鼓不变,就算数值不大也要用double.了解java虚拟机的底层会知道,float放在内存中其实是当作dou ...

  4. python常用命令—‘\r’

    # \r 默认表示将输出的内容返回到第一个指针,这样的话,后面的内容会覆盖前面的内容 如常用的显示程序完成进度!!

  5. 完全背包问题 :背包dp

    题目描述: 有 N种物品和一个容量是 V 的背包,每种物品都有无限件可用.第 i 种物品的体积是 vi,价值是 wi. 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大.输出最 ...

  6. 洛谷 P1706 全排列问题 :STL / dfs

    题目描述 输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入输出格式 输入格式: n(1≤n≤9) 输出格式: 由1-n组成的所有不重复的数字序列, ...

  7. UVa -1584 Circular Sequence 解题报告 - C语言

    1.题目大意 输入长度为n$(2\le n\le 100)$的环状DNA串,找出该DNA串字典序最小的最小表示. 2.思路 这题特别简单,一一对比不同位置开始的字符串的字典序,更新result. 3. ...

  8. 【树莓派 Raspberry-Pi 】用Windows远程桌面连接树莓派的方法【转】

    树莓派DIY笔记之前有介绍过用VNC连接到树莓派的方法.在Windows下,当然还是自带的远程桌面更便捷.如果不想用VNC,利用远程桌面(mstsc.exe)连接树莓派,如何实现? 只需要在raspb ...

  9. c# dllimport

    DllImport会按照顺序自动去寻找的地方:1.exe所在目录 2.System32目录 3.环境变量目录.所以只需要你把引用的DLL 拷贝到这三个目录下 就可以不用写路径了 或者可以这样serve ...

  10. Java语法基础课后作业

    1.动手动脑 运行它EnumTest.java,分析运行结果 s和t分别引用的是SMALL和LARGE,枚举类型不是原始数据类型,s和u的赋值方式不同,但结果一样,列出它的所有值:SMALL,MEDI ...