A Simple Problem with Integers
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 92921   Accepted: 28910
Case Time Limit: 2000MS

Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.
题目大意:
给你n个数,然后会进行q次操作,Q a b为查询区间[a,b]所有数的和sum,
C a b c ,为将区间[a,b]所有数整体加c。
思路分析:如果只是改变某一个数的值,我们直接用一个裸的线段树来维护就行,但是这个题是
区间的值整体发生变化,如果再进行和以前一样的操作,则update的复杂度变成了LlogL(L为
区间长度)很不高效,势必超时,因此我们可以采用lazy标记的方法,用空间换时间,开一个lazy
数组,每次不必访问到根节点,只需要到更新的区间所在的节点就可以,大大提高了程序效率,只需要
明确lazy标记什么时候往儿子传就可以,一个是要往子节点更新,另一个是即将要查询子节点,都要将
lazy标记向下传一层,传给自己的儿子,增值会爆int,需要用long long
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn=+;
typedef long long ll;
ll tree[*maxn];
ll lazy[*maxn];
ll num[maxn];
void build (int p,int l,int r)
{
if(l==r) {tree[p]=num[l];return;}
int mid=(l+r)>>;
build(p<<,l,mid);
build((p<<)|,mid+,r);
tree[p]=tree[p<<]+tree[(p<<)|];
}
void pushdown(int p,int m)//把lazy标记下放到儿子节点
{
if(lazy[p])
{
lazy[p<<]+=lazy[p];
lazy[(p<<)|]+=lazy[p];
tree[p<<]+=(m-(m>>))*lazy[p];
tree[(p<<)|]+=(m>>)*lazy[p];
lazy[p]=;
}
}
void update(int p,int l,int r,int x,int y,int v)
{
if(x<=l&&y>=r)
{
lazy[p]+=v;
tree[p]+=(ll)v*(r-l+);//区间长度
return;
}
pushdown(p,r-l+);
int mid=(l+r)>>;
if(y<=mid) update(p<<,l,mid,x,y,v);
else if(x>mid) update((p<<)|,mid+,r,x,y,v);
else {update(p<<,l,mid,x,mid,v),update((p<<)|,mid+,r,mid+,y,v);}
tree[p]=tree[p<<]+tree[(p<<)|];
}
ll find(int p,int l,int r,int x,int y)
{
if(x<=l&&y>=r){return tree[p];}
pushdown(p,r-l+);
int mid=(l+r)>>;
ll ans=;
if(y<=mid) ans=find(p<<,l,mid,x,y);
else if(x>mid) ans=find((p<<)|,mid+,r,x,y);
else ans=find(p<<,l,mid,x,mid)+find((p<<)|,mid+,r,mid+,y);
return ans;
}
int main()
{
int n,q;
char s[];
int a,b,c;
while(~scanf("%d%d",&n,&q))
{
memset(tree,,sizeof(tree));
memset(lazy,,sizeof(lazy));
for(int i=;i<=n;i++)
scanf("%lld",&num[i]);
build(,,n);
while(q--)
{
scanf("%s",s);
if(s[]=='Q')
{
scanf("%d%d",&a,&b);
printf("%lld\n",find(,,n,a,b));
}
else
{
scanf("%d%d%d",&a,&b,&c);
update(,,n,a,b,c);
}
}
}
}

poj3468 线段树+lazy标记的更多相关文章

  1. POJ3237 Tree(树剖+线段树+lazy标记)

    You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbe ...

  2. 线段树+lazy标记 2019年8月10日计蒜客联盟周赛 C.小A的题

    题目链接:https://nanti.jisuanke.com/t/40852 题意:给定一个01串s,进行m次操作,|s|<=1e6,m<=5e5 操作有两种 l r 0,区间[l,r] ...

  3. HDU_1698 Just a Hook(线段树+lazy标记)

    pid=1698">题目请点我 题解: 接触到的第一到区间更新,须要用到lazy标记.典型的区间着色问题. lazy标记详情请參考博客:http://ju.outofmemory.cn ...

  4. POJ 3225 线段树+lazy标记

    lazy写崩了--. 查了好久 /* U-> [l,r]–>1 I-> [1,l-1] [r+1,+无穷] –>0 D-> [l,r]–>0 C-> [1,l ...

  5. 线段树+Lazy标记(我的模版)

    #include <bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ...

  6. C++-POJ2777-Count Color[线段树][lazy标记][区间修改]

     分析:https://www.bilibili.com/read/cv4777102 #include <cstdio> #include <algorithm> using ...

  7. 线段树lazy标记??Hdu4902

    Nice boat Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) To ...

  8. hdu-3397 Sequence operation 线段树多种标记

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3397 题目大意: 0 a b表示a-b区间置为0 1 a b表示a-b区间置为1 2 a b表示a- ...

  9. HDU 3468:A Simple Problem with Integers(线段树+延迟标记)

    A Simple Problem with Integers Case Time Limit: 2000MS Description You have N integers, A1, A2, ... ...

随机推荐

  1. MD5 加密 代码

    /*! 获取MD5 加密串 */ +(NSString *)getAuthorization:(NSString *)type Date:(NSDate *)date UserSecret:(NSSt ...

  2. Sicily 1034. Forest

    题目地址:1034. Forest 思路: 网上很多说用深搜,很任性.......发现广搜也挺好用的,实验课打的(⊙o⊙)…orz........囧. 先找根结点,根据根结点广搜深度,广搜宽度,不过要 ...

  3. How systems researchers build systems

    Define the problem >>Identify the constraints and abstract problem propose solution:simple ide ...

  4. angularjs directive and component 指令与组件 ( 1.5.0 以后 )

    之前写过一篇了 http://www.cnblogs.com/keatkeat/p/3903673.html 但某些部分写的不太清楚,甚至有点错误,所以今天特地在这里再来谈谈. 这篇主要是说指令的隔离 ...

  5. Linux系统编程(35)—— socket编程之TCP服务器的并发处理

    我们知道,服务器通常是要同时服务多个客户端的,如果我们运行上一篇实现的server和client之后,再开一个终端运行client试试,新的client就不能能得到服务了.因为服务器之支持一个连接. ...

  6. win7下自写驱动导致开机蓝屏调试过程

    之前没有接触过驱动调试.这里上手就要解决一个因为某个自定义驱动导致的系统登陆后蓝屏问题,记录下来.   问题: 从客户那边弄来的一个虚拟机,已知是加了我们的驱动之后才会导致蓝屏. 解决过程:   使用 ...

  7. USACO6.5-Closed Fences:计算几何

    Closed Fences A closed fence in the plane is a set of non-crossing, connected line segments with N c ...

  8. VMware migration to openstack kvm

  9. Map的遍历方法及String和其它类型的相互转化

    Map的遍历方法: package com.lky.test; import java.util.HashMap; import java.util.Iterator; import java.uti ...

  10. WINDOWS OPTIMIZE

    WIN10 SHUT DOWN AUTOMATICALLY UPDATE 1.service -> windows update 2.gpedit ->计算机配置 - 管理模板 - Win ...