/**
大意: 给定整数N,1<= x,y <= N 求解有多少gcd(x,y) 为素数 n=10^7
思路: 首先考虑到n 如此之大,用的快速求欧拉函数。
先默认 y〉x
分析: gcd(x,y) =2, gcd(x,y) = 3, gcd(x,y) = 5, gcd(x,y) = 7。。。。
即 gcd(x,y/2) =1, gcd(x, y/3) =1, gcd(x, y/5) =1, gcd(x,y/7) = 1 。。。。
以gcd(x,y) = 2 为例 -----> gcd(x,y/2) = 1;
就是求比y/2小的所有与y/2 互质数的个数。。。y取值为2,4,6,8,10.。。。
所以siga(gcd(x,2)=2 + gcd(x,4) =2 + gcd( x,6) =2 + 。。。)=
----->siga(gcd(x,1)=1 + gcd(x,2) =1 + gcd( x,3) =1 + 。+ gcd(x,n/2)=1)
其他的同理。。。
所以先预处理 小于n 的所有互质数的个数 s[i] = s[i-1]+phi[i];
使用时
if(n>=prime[i]){
ans += 2*s[n/prime[i]]-1; (也有可能x 〉y)
}
**/ #include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; #define Max 10000000 long long s[Max+],f[Max+],phi[Max+];
int prime[Max/];
bool flag[Max+];
int num;
void init()
{
int i,j;
num=;
memset(flag,,sizeof(flag));
phi[]=;
for(i=;i<=Max;i++){//欧拉筛选
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(j=;j<num && prime[j]*i<=Max;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
s[] =;
for(int i=;i<Max;i++)
s[i] = s[i-]+phi[i];
} int main(){
init();
long long n;
while(cin>>n){
long long ans =;
for(int i=;i<num;i++)
if(n>=prime[i]){
ans += *s[n/prime[i]]-;
}
cout<<ans<<endl;
}
}

HYSBZ 2818 gcd的更多相关文章

  1. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  2. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  3. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. BZOJ 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4443  Solved: 1960[Submit][Status][Discuss ...

  6. bzoj 2818: Gcd GCD(a,b) = 素数

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1566  Solved: 691[Submit][Status] Descript ...

  7. bzoj 2818: Gcd 歐拉函數

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1633  Solved: 724[Submit][Status] Descript ...

  8. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  9. 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2170  Solved: 979[Submit][Status][Discuss] ...

随机推荐

  1. BZOJ 1177 [Apio2009]Oil(递推)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1177 [题目大意] 给出一个矩阵,从中选出3个k*k且不相交的矩阵,使得其总和最大 [ ...

  2. Primefaces 中e.offset(...)问题的处理

    问题 在使用Primefaces构建的页面中,原来好好的页面莫名奇异的出现下拉框不能显示数据且点击没有反应的情况.后来通过firefox发现其JS抛出了一个e.offset(...)错误 解决方法 经 ...

  3. java String.Format详解

    JDK1.5中,String类新增了一个很有用的静态方法String.format(): format(Locale l, String format, Object... args) 使用指定的语言 ...

  4. VS2015操作Oracle数据需要做那些设置?

    1>在oracle网上下载:ODP.NET 2> 要根据自己的oracle 数据32bit/64bit,选择下载. 3> 根据提示配置tnsnames.ora文件. # alias ...

  5. 开启新的activity获取它的返回值

    1.开始界面 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:t ...

  6. iOS实践04

    第四天 微博数据展示:获取服务器数据,json数据的解析,MVC的使用,自定义cell高度的计算,一些分类的设计.已经是第四天了,虽然每天都有课程,但这个东西也基本完成了一大半吧,一些忘掉的知识也捡起 ...

  7. js中||和&&的用法

    在js中&&.||不一定都是用来判断一个表达式的逻辑值是true.false,更多的是用来依据真值或者假值执行相应操作! a() && b() :如果执行a()后返回t ...

  8. 记录:sea.js和require.js配置 与 性能对比

    最近有点忙,很久无写博客,记录一下之前的配置require.js和sea.js的配置.(有误有望提出 require.js 文件目录 /app(项目使用js) /lib(require.js jq存放 ...

  9. codeforces 616E. Sum of Remainders 数学

    题目链接 给两个数n, m. 求n%1+n%2+.......+n%m的值. 首先, n%i = n-n/i*i, 那么原式转化为n*m-sigma(i:1 to m)(n/i*i). 然后我们可以发 ...

  10. JS 回到顶部

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...