HYSBZ 2818 gcd
/**
大意: 给定整数N,1<= x,y <= N 求解有多少gcd(x,y) 为素数 n=10^7
思路: 首先考虑到n 如此之大,用的快速求欧拉函数。
先默认 y〉x
分析: gcd(x,y) =2, gcd(x,y) = 3, gcd(x,y) = 5, gcd(x,y) = 7。。。。
即 gcd(x,y/2) =1, gcd(x, y/3) =1, gcd(x, y/5) =1, gcd(x,y/7) = 1 。。。。
以gcd(x,y) = 2 为例 -----> gcd(x,y/2) = 1;
就是求比y/2小的所有与y/2 互质数的个数。。。y取值为2,4,6,8,10.。。。
所以siga(gcd(x,2)=2 + gcd(x,4) =2 + gcd( x,6) =2 + 。。。)=
----->siga(gcd(x,1)=1 + gcd(x,2) =1 + gcd( x,3) =1 + 。+ gcd(x,n/2)=1)
其他的同理。。。
所以先预处理 小于n 的所有互质数的个数 s[i] = s[i-1]+phi[i];
使用时
if(n>=prime[i]){
ans += 2*s[n/prime[i]]-1; (也有可能x 〉y)
}
**/ #include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; #define Max 10000000 long long s[Max+],f[Max+],phi[Max+];
int prime[Max/];
bool flag[Max+];
int num;
void init()
{
int i,j;
num=;
memset(flag,,sizeof(flag));
phi[]=;
for(i=;i<=Max;i++){//欧拉筛选
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(j=;j<num && prime[j]*i<=Max;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
s[] =;
for(int i=;i<Max;i++)
s[i] = s[i-]+phi[i];
} int main(){
init();
long long n;
while(cin>>n){
long long ans =;
for(int i=;i<num;i++)
if(n>=prime[i]){
ans += *s[n/prime[i]]-;
}
cout<<ans<<endl;
}
}
HYSBZ 2818 gcd的更多相关文章
- HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】
I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- BZOJ 2818: Gcd
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4443 Solved: 1960[Submit][Status][Discuss ...
- bzoj 2818: Gcd GCD(a,b) = 素数
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1566 Solved: 691[Submit][Status] Descript ...
- bzoj 2818: Gcd 歐拉函數
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1633 Solved: 724[Submit][Status] Descript ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- 2818: Gcd
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2170 Solved: 979[Submit][Status][Discuss] ...
随机推荐
- C# 保留小数点后两位(方法总结)
最简单使用: float i=1.6667f; string show=i.ToString("0.00"); //结果1.67(四舍五入) 其他类似方法: string show ...
- 2015 11 26 java 配置环境变量
使用java软件, 须进行改变配置环境变量.需要2步. 第一,在电脑中找到配置环境变量的位置: 我的电脑,属性,高级,环境变量. 第二,进行添加两个变量,更改一个变量: 1,变量名:JAVA_HOME ...
- pv ticketlock解决虚拟环境下的spinlock问题
最近看邮件,有注意到pv ticketlock相关的消息,貌似jeremy 几年前的东东,终于将要被收录到linux 3.12里面. 先说下pv ticketlock这东西,http://blog.x ...
- frame.origin.x 的意思和作用?
frame.origin.x 的意思和作用? scrollView.frame 一个view的frame 包含它的矩形形状(size)的长和宽. 和它在父视图中的坐标原点(origin)x和y坐标 f ...
- sysctl: command not found
在安装RedHat5.9时没有在安装时定制软件包,在后面使用sysctl命令时提示: -bash: sysctl: command not found 找了半天原来是还需要安装: rpm -ivh p ...
- UIImage缩放
+(UIImage *)scaleImage: (UIImage *)image scaleFactor:(float)scaleFloat { CGSize size = CGSizeMake(im ...
- SQLite学习手册(目录)
链接地址:http://www.cnblogs.com/stephen-liu74/archive/2012/01/22/2328757.html 在实际的应用中,SQLite作为目前最为流行的开源嵌 ...
- maxContainerCapability 设置不足
异常: REDUCE capability required is more than the supported max container capability in the cluster. K ...
- Mysql 库、表、字段 字符集
show character set;show create database aloe;show create table book_category;show full columns from ...
- 5.6.3.7 localeCompare() 方法
与操作字符串有关的最后一个方法是localeCompare(),这个方法比较两个字符串,并返回下列值中的一个: 如果字符串在字母表中应该排在字符串参数之前,则返回一个负数(大多数情况下是-1,具体的值 ...