在socket网络程序中,TCP和UDP分别是面向连接和非面向连接的。因此TCP的socket编程,收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。
       对于UDP,不会使用块的合并优化算法,这样,实际上目前认为,是由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了

保护消息边界和流

那么什么是保护消息边界和流呢?

保护消息边界,就是指传输协议把数据当作一条独立的消息在网上 
传输,接收端只能接收独立的消息.也就是说存在保护消息边界,接收 
端一次只能接收发送端发出的一个数据包. 
       而面向流则是指无保护消息保护边界的,如果发送端连续发送数据, 
接收端有可能在一次接收动作中,会接收两个或者更多的数据包.

我们举个例子来说,例如,我们连续发送三个数据包,大小分别是2k, 
4k , 8k,这三个数据包,都已经到达了接收端的网络堆栈中,如果使 
UDP协议,不管我们使用多大的接收缓冲区去接收数据,我们必须有 
三次接收动作,才能够把所有的数据包接收完.而使用TCP协议,我们 
只要把接收的缓冲区大小设置在14k以上,我们就能够一次把所有的 
数据包接收下来.只需要有一次接收动作.

这就是因为UDP协议的保护消息边界使得每一个消息都是独立的.而 
流传输,却把数据当作一串数据流,他不认为数据是一个一个的消息.

所以有很多人在使用tcp协议通讯的时候,并不清楚tcp是基于流的 
传输,当连续发送数据的时候,他们时常会认识tcp会丢包.其实不然, 
因为当他们使用的缓冲区足够大时,他们有可能会一次接收到两个甚 
至更多的数据包,而很多人往往会忽视这一点,只解析检查了第一个 
数据包,而已经接收的其他数据包却被忽略了.所以大家如果要作这 
类的网络编程的时候,必须要注意这一点.

结论:
     根据以上所说,可以这样理解,TCP为了保证可靠传输,尽量减少额外
开销(每次发包都要验证),因此采用了流式传输,面向流的传输,
相对于面向消息的传输,可以减少发送包的数量。从而减少了额外开
销。但是,对于数据传输频繁的程序来讲,使用TCP可能会容易粘包。
当然,对接收端的程序来讲,如果机器负荷很重,也会在接收缓冲里
粘包。这样,就需要接收端额外拆包,增加了工作量。因此,这个特
别适合的是数据要求可靠传输,但是不需要太频繁传输的场合(
两次操作间隔100ms,具体是由TCP等待发送间隔决定的,取决于内核
中的socket的写法)

而UDP,由于面向的是消息传输,它把所有接收到的消息都挂接到缓冲
区的接受队列中,因此,它对于数据的提取分离就更加方便,但是,
它没有粘包机制,因此,当发送数据量较小的时候,就会发生数据包
有效载荷较小的情况,也会增加多次发送的系统发送开销(系统调用,
写硬件等)和接收开销。因此,应该最好设置一个比较合适的数据包
的包长,来进行UDP数据的发送。(UDP最大载荷为1472,因此最好能
每次传输接近这个数的数据量,这特别适合于视频,音频等大块数据
的发送,同时,通过减少握手来保证流媒体的实时性)

来自: http://hi.baidu.com/chongerfeia/blog/item/b1e572f631dd7e28bd310965.html

TCP无保护消息边界的解决
 针对这个问题,一般有3种解决方案:

      (1)发送固定长度的消息

      (2)把消息的尺寸与消息一块发送

      (3)使用特殊标记来区分消息间隔

     

下面我们主要分析下前两种方法:

1、发送固定长度的消息 
这种方法的好处是他非常容易,而且只要指定好消息的长度,没有遗漏未未发的数据,我们重写了一个SendMessage方法。代码如下:

  private static int SendMessage(Socket s, byte[] msg)

        { 
            int offset = 0; 
            int size = msg.Length; 
            int dataleft = size;

            while (dataleft > 0) 
            {

                int sent = s.Send(msg, offset, SocketFlags.None); 
                offset += sent; 
                dataleft -= sent;

            }

            return offset; 
        }

简要分析一下这个函数:形参s是进行通信的套接字,msg即待发送的字节数组。该方法使用while循环检查是否还有数据未发送,尤其当发送一个很庞大的数据包,在不能一次性发完的情况下作用比较明显。特别的,用sent来记录实际发送的数据量,和recv是异曲同工的作用,最后返回发送的实际数据总数。

   有sentMessage函数后,还要根据指定的消息长度来设计一个新的Recive方法。代码如下:

  private byte[] ReciveMessage(Socket s, int size) 
        {

            int offset = 0; 
            int recv; 
            int dataleft = size; 
            byte[] msg = new byte[size];

while (dataleft > 0)

{

//接收消息 
                recv = s.Receive(msg, offset, dataleft, 0); 
                if (recv == 0)

{

break;


                offset += recv; 
                dataleft -= recv;

}

return msg;

}

以上这种做法比较适合于消息长度不是很长的情况。

2、消息长度与消息一同发送

我们可以这样做:通过使用消息的整形数值来表示消息的实际大小,所以要把整形数转换为字节类型。下面是发送变长消息的SendMessage方法。具体代码如下:

private static int SendMessage(Socket s, byte[] msg) 
        {

int offset = 0; 
            int sent; 
            int size = msg.Length; 
            int dataleft = size; 
            byte[] msgsize = new byte[2];

//将消息尺寸从整形转换成可以发送的字节型 
            msgsize = BitConverter.GetBytes(size);

//发送消息的长度信息 
            sent = s.Send(size);

while (dataleft > 0)

{

sent = s.Send(msg, offset, dataleft, SocketFlags.None);

//设置偏移量

offset += sent; 
                dataleft -= sent;

}

return offset;

}

下面是接收变长消息的ReciveVarMessage方法。代码如下:

private byte[] ReciveVarMessage(Socket s) 
        {

int offset = 0; 
            int recv; 
            byte[] msgsize = new byte[2];

//将字节数组的消息长度信息转换为整形 
            int size = BitConverter.ToInt16(msgsize); 
            int dataleft = size; 
            byte[] msg = new byte[size];

//接收2个字节大小的长度信息 
            recv = s.Receive(msgsize, 0, 2, 0); 
            while (dataleft > 0) 
            {

//接收数据 
                recv = s.Receive(msg, offset, dataleft, 0); 
                if (recv == 0) 
                { 
                    break; 
                } 
                offset += recv; 
                dataleft -= recv;

}

return msg;

}

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/xinshi9608/archive/2010/12/31/6109511.aspx

TCP和UDP的"保护消息边界" (经典)的更多相关文章

  1. TCP和UDP的保护消息边界机制

    在socket网络程序中,TCP和UDP分别是面向连接和非面向连接的.TCP的socket编程,收发两端都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化 ...

  2. TCP和UDP的"保护消息边界”

    转自:http://blog.csdn.net/zhangxinrun/article/details/6721427 在socket网络程序中,TCP和UDP分别是面向连接和非面向连接的.因此TCP ...

  3. 有关TCP和UDP 粘包 消息保护边界

    http://www.cnblogs.com/lancidie/archive/2013/10/28/3392428.html 在socket网络程序中,TCP和UDP分别是面向连接和非面向连接的.因 ...

  4. 【转】关于TCP和UDP协议消息保护边界的介绍

    在 socket网络程序中,TCP和UDP分别是面向连接和非面向连接的.因此TCP的socket编程,收发两端(客户端和服务器端)都要有一一成对的 socket,因此,发送端为了将多个发往接收端的包, ...

  5. UDP TCP 消息边界

    先明确一个问题,如果定义了一个数据结构,大小是,比方说 32 个字节,然后 UDP 客户端连续向服务端发了两个包.现在假设这两个包都已经到达了服务器,那么服务端调用 recvfrom 来接收数据,并且 ...

  6. 介绍开源的.net通信框架NetworkComms框架之四 消息边界

    原文网址: http://www.cnblogs.com/csdev Networkcomms 是一款C# 语言编写的TCP/UDP通信框架  作者是英国人  以前是收费的 目前作者已经开源  许可是 ...

  7. 【转】TCP协议的无消息边界问题

    http://www.cnblogs.com/eping/archive/2009/12/12/1622579.html   使用TCP协议编写应用程序时,需要考虑一个问题:TCP协议是无消息边界的, ...

  8. Mina、Netty、Twisted一起学(二):TCP消息边界问题及按行分割消息

    在TCP连接开始到结束连接,之间可能会多次传输数据,也就是服务器和客户端之间可能会在连接过程中互相传输多条消息.理想状况是一方每发送一条消息,另一方就立即接收到一条,也就是一次write对应一次rea ...

  9. 基于tcp的应用层消息边界如何定义

    聊聊基于tcp的应用层消息边界如何定义 背景 2018年笔者有幸接触一个项目要用到长连接实现云端到设备端消息推送,所以借机了解过相关的内容,最终是通过rabbitmq+mqtt实现了相关功能,同时在心 ...

随机推荐

  1. 二代USBKEY与一代USBKEY有什么区别?使用时需要注意什么?

    二代USBKEY相较于一代USBKEY产品,增加了屏幕以及按键功能:可通过二代USBKEY产品的屏幕查看交易或操作信息,通过按键的方式进行上翻.下翻.确认.取消等操作. 二代USBKEY产品采用Mic ...

  2. Qt多线程编程总结(二)——QMutex

    QMutex类提供的是线程之间的访问顺序化. QMutex的目的是保护一个对象.数据结构或者代码段,所以同一时间只有一个线程可以访问它.(在Java术语中,它和同步关键字“synchronized”很 ...

  3. Qt的Model/View Framework解析(数据是从真正的“肉(raw)”里取得,Model提供肉,所以读写文件、操作数据库、网络通讯等一系列与数据打交道的工作就在model中做了)

    最近在看Qt的Model/View Framework,在网上搜了搜,好像中文的除了几篇翻译没有什么有价值的文章.E文的除了Qt的官方介绍,其它文章也很少.看到一个老外在blog中写道Model/Vi ...

  4. Dubbo原理解析-监控

    Dubbo发布代码中,自带了一个简易的监控中心实现.对于一般的小业务这个监控中心应该能够满足需求,对于那些大业务量的大公司一般都会有自己的监控中心,更加丰富的功能如常用的报警短信通知等等.这章讲解分析 ...

  5. 在systemd(CentOS7)自启动zookeeper

    zookeeper的自启动脚本,如果是 sysV 模式(CeontOS6或以下版本),可以直接使用下载版本中的 src 目录下对应的 sysV 自启动包,再chkconfig即可.老方法,简单,就不说 ...

  6. HDOJ 1427(dfs) 速算24点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1427 思路分析: 题目要求判断是否存在一种运算组合使得4个数的计算结果为24,因为搜索的层次为3层,不 ...

  7. Struts2之—集成Json插件实现Ajax

       上篇博客介绍了Struts2中自己定义结果集实现Ajax,也分析了它的缺点:这样自己定义的结果集,写死了,不能做到client须要什么数据就传什么数据:Struts2之-自己定义结果集实现aja ...

  8. 专门针对初学者的Node.js教程

    转载原文:http://www.csdn.net/article/2013-08-28/2816731-absolute-beginners-guide-to-nodejs Node.js的教程并不缺 ...

  9. Java多线程之非线程安全

    在Java多线程中我会重点总结五个如下的技术点: 1.非线程安全是如何出现的 2.synchronized对象监视器为Objec时的使用 3.synchronized对象监视器为Class时的使用 4 ...

  10. r语言之条件、循环语句

    if条件语句:if (conditon) {expr1} else {expr2} > x<-1> if(x==1)+ {x<-"x=1"}else+ {x ...