C# 验证识别基类
网上找了些代码 自己又改了下
先放出来了 处理简单的验证码足够了
001
using System;
002
using System.Collections.Generic;
003
using System.Linq;
004
using System.Text;
005
using System.Drawing;
006
using System.Drawing.Imaging;
007
using System.Runtime.InteropServices;
008 009
namespace 验证码处理
010
{
011
class VerifyCode
012
{
013
public Bitmap bmpobj;
014 015
public VerifyCode(Bitmap pic)
016
{
017
bmpobj = new Bitmap(pic); //转换为Format32bppRgb
018
}
019 020
/// <summary>
021
/// 根据RGB,计算灰度值
022
/// </summary>
023
/// <param name="posClr">Color值</param>
024
/// <returns>灰度值,整型</returns>
025
private int GetGrayNumColor(System.Drawing.Color posClr)
026
{
027
return (posClr.R * 19595 + posClr.G * 38469 + posClr.B * 7472) >> 16;
028
}
029 030
/// <summary>
031
/// 灰度转换,逐点方式
032
/// </summary>
033
public void GrayByPixels()
034
{
035
for (int i = 0; i < bmpobj.Height; i++)
036
{
037
for (int j = 0; j < bmpobj.Width; j++)
038
{
039
int tmpValue = GetGrayNumColor(bmpobj.GetPixel(j, i));
040
bmpobj.SetPixel(j, i, Color.FromArgb(tmpValue, tmpValue, tmpValue));
041
}
042
}
043
}
044 045
/// <summary>
046
/// 去图形边框
047
/// </summary>
048
/// <param name="borderWidth"></param>
049
public void ClearPicBorder(int borderWidth)
050
{
051
for (int i = 0; i < bmpobj.Height; i++)
052
{
053
for (int j = 0; j < bmpobj.Width; j++)
054
{
055
if (i < borderWidth || j < borderWidth || j > bmpobj.Width - 1 - borderWidth || i > bmpobj.Height - 1 - borderWidth)
056
bmpobj.SetPixel(j, i, Color.FromArgb(255, 255, 255));
057
}
058
}
059
}
060 061
/// <summary>
062
/// 灰度转换,逐行方式
063
/// </summary>
064
public void GrayByLine()
065
{
066
Rectangle rec = new Rectangle(0, 0, bmpobj.Width, bmpobj.Height);
067
BitmapData bmpData = bmpobj.LockBits(rec, ImageLockMode.ReadWrite, bmpobj.PixelFormat);// PixelFormat.Format32bppPArgb);
068
// bmpData.PixelFormat = PixelFormat.Format24bppRgb;
069
IntPtr scan0 = bmpData.Scan0;
070
int len = bmpobj.Width * bmpobj.Height;
071
int[] pixels = new int[len];
072
Marshal.Copy(scan0, pixels, 0, len);
073 074
//对图片进行处理
075
int GrayValue = 0;
076
for (int i = 0; i < len; i++)
077
{
078
GrayValue = GetGrayNumColor(Color.FromArgb(pixels[i]));
079
pixels[i] = (byte)(Color.FromArgb(GrayValue, GrayValue, GrayValue)).ToArgb(); //Color转byte
080
}
081 082
bmpobj.UnlockBits(bmpData);
083 084
////输出
085
//GCHandle gch = GCHandle.Alloc(pixels, GCHandleType.Pinned);
086
//bmpOutput = new Bitmap(bmpobj.Width, bmpobj.Height, bmpData.Stride, bmpData.PixelFormat, gch.AddrOfPinnedObject());
087
//gch.Free();
088
}
089 090
/// <summary>
091
/// 得到有效图形并调整为可平均分割的大小
092
/// </summary>
093
/// <param name="dgGrayValue">灰度背景分界值</param>
094
/// <param name="CharsCount">有效字符数</param>
095
/// <returns></returns>
096
public void GetPicValidByValue(int dgGrayValue, int CharsCount)
097
{
098
int posx1 = bmpobj.Width; int posy1 = bmpobj.Height;
099
int posx2 = 0; int posy2 = 0;
100
for (int i = 0; i < bmpobj.Height; i++) //找有效区
101
{
102
for (int j = 0; j < bmpobj.Width; j++)
103
{
104
int pixelValue = bmpobj.GetPixel(j, i).R;
105
if (pixelValue < dgGrayValue) //根据灰度值
106
{
107
if (posx1 > j) posx1 = j;
108
if (posy1 > i) posy1 = i;
109 110
if (posx2 < j) posx2 = j;
111
if (posy2 < i) posy2 = i;
112
};
113
};
114
};
115
// 确保能整除
116
int Span = CharsCount - (posx2 - posx1 + 1) % CharsCount; //可整除的差额数
117
if (Span < CharsCount)
118
{
119
int leftSpan = Span / 2; //分配到左边的空列 ,如span为单数,则右边比左边大1
120
if (posx1 > leftSpan)
121
posx1 = posx1 - leftSpan;
122
if (posx2 + Span - leftSpan < bmpobj.Width)
123
posx2 = posx2 + Span - leftSpan;
124
}
125
//复制新图
126
Rectangle cloneRect = new Rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1);
127
bmpobj = bmpobj.Clone(cloneRect, bmpobj.PixelFormat);
128
}
129 130
/// <summary>
131
/// 得到有效图形,图形为类变量
132
/// </summary>
133
/// <param name="dgGrayValue">灰度背景分界值</param>
134
/// <param name="CharsCount">有效字符数</param>
135
/// <returns></returns>
136
public void GetPicValidByValue(int dgGrayValue)
137
{
138
int posx1 = bmpobj.Width; int posy1 = bmpobj.Height;
139
int posx2 = 0; int posy2 = 0;
140
for (int i = 0; i < bmpobj.Height; i++) //找有效区
141
{
142
for (int j = 0; j < bmpobj.Width; j++)
143
{
144
int pixelValue = bmpobj.GetPixel(j, i).R;
145
if (pixelValue < dgGrayValue) //根据灰度值
146
{
147
if (posx1 > j) posx1 = j;
148
if (posy1 > i) posy1 = i;
149 150
if (posx2 < j) posx2 = j;
151
if (posy2 < i) posy2 = i;
152
};
153
};
154
};
155
//复制新图
156
Rectangle cloneRect = new Rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1);
157
bmpobj = bmpobj.Clone(cloneRect, bmpobj.PixelFormat);
158
}
159 160
/// <summary>
161
/// 得到有效图形,图形由外面传入
162
/// </summary>
163
/// <param name="dgGrayValue">灰度背景分界值</param>
164
/// <param name="CharsCount">有效字符数</param>
165
/// <returns></returns>
166
public Bitmap GetPicValidByValue(Bitmap singlepic, int dgGrayValue)
167
{
168
int posx1 = singlepic.Width; int posy1 = singlepic.Height;
169
int posx2 = 0; int posy2 = 0;
170
for (int i = 0; i < singlepic.Height; i++) //找有效区
171
{
172
for (int j = 0; j < singlepic.Width; j++)
173
{
174
int pixelValue = singlepic.GetPixel(j, i).R;
175
if (pixelValue < dgGrayValue) //根据灰度值
176
{
177
if (posx1 > j) posx1 = j;
178
if (posy1 > i) posy1 = i;
179 180
if (posx2 < j) posx2 = j;
181
if (posy2 < i) posy2 = i;
182
};
183
};
184
};
185
//复制新图
186
Rectangle cloneRect = new Rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1);
187
return singlepic.Clone(cloneRect, singlepic.PixelFormat);
188
}
189 190
/// <summary>
191
/// 平均分割图片
192
/// </summary>
193
/// <param name="RowNum">水平上分割数</param>
194
/// <param name="ColNum">垂直上分割数</param>
195
/// <returns>分割好的图片数组</returns>
196
public Bitmap [] GetSplitPics(int RowNum,int ColNum)
197
{
198
if (RowNum == 0 || ColNum == 0)
199
return null;
200
int singW = bmpobj.Width / RowNum;
201
int singH = bmpobj.Height / ColNum;
202
Bitmap [] PicArray=new Bitmap[RowNum*ColNum];
203 204
Rectangle cloneRect;
205
for (int i = 0; i < ColNum; i++) //找有效区
206
{
207
for (int j = 0; j < RowNum; j++)
208
{
209
cloneRect = new Rectangle(j*singW, i*singH, singW , singH);
210
PicArray[i*RowNum+j]=bmpobj.Clone(cloneRect, bmpobj.PixelFormat);//复制小块图
211
}
212
}
213
return PicArray;
214
}
215 216
/// <summary>
217
/// 返回灰度图片的点阵描述字串,1表示灰点,0表示背景
218
/// </summary>
219
/// <param name="singlepic">灰度图</param>
220
/// <param name="dgGrayValue">背前景灰色界限</param>
221
/// <returns></returns>
222
public string GetSingleBmpCode(Bitmap singlepic, int dgGrayValue)
223
{
224
Color piexl;
225
string code = "";
226
for (int posy = 0; posy < singlepic.Height; posy++)
227
for (int posx = 0; posx < singlepic.Width; posx++)
228
{
229
piexl = singlepic.GetPixel(posx, posy);
230
if (piexl.R < dgGrayValue) // Color.Black )
231
code = code + "1";
232
else
233
code = code + "0";
234
}
235
return code;
236
}
237 238
/// <summary>
239
/// 得到灰度图像前景背景的临界值 最大类间方差法
240
/// </summary>
241
/// <returns>前景背景的临界值</returns>
242
public int GetDgGrayValue()
243
{
244
int[] pixelNum = new int[256]; //图象直方图,共256个点
245
int n, n1, n2;
246
int total; //total为总和,累计值
247
double m1, m2, sum, csum, fmax, sb; //sb为类间方差,fmax存储最大方差值
248
int k, t, q;
249
int threshValue = 1; // 阈值
250
//生成直方图
251
for (int i = 0; i < bmpobj.Width; i++)
252
{
253
for (int j = 0; j < bmpobj.Height; j++)
254
{
255
//返回各个点的颜色,以RGB表示
256
pixelNum[bmpobj.GetPixel(i, j).R]++; //相应的直方图加1
257
}
258
}
259
//直方图平滑化
260
for (k = 0; k <= 255; k++)
261
{
262
total = 0;
263
for (t = -2; t <= 2; t++) //与附近2个灰度做平滑化,t值应取较小的值
264
{
265
q = k + t;
266
if (q < 0) //越界处理
267
q = 0;
268
if (q > 255)
269
q = 255;
270
total = total + pixelNum[q]; //total为总和,累计值
271
}
272
pixelNum[k] = (int)((float)total / 5.0 + 0.5); //平滑化,左边2个+中间1个+右边2个灰度,共5个,所以总和除以5,后面加0.5是用修正值
273
}
274
//求阈值
275
sum = csum = 0.0;
276
n = 0;
277
//计算总的图象的点数和质量矩,为后面的计算做准备
278
for (k = 0; k <= 255; k++)
279
{
280
sum += (double)k * (double)pixelNum[k]; //x*f(x)质量矩,也就是每个灰度的值乘以其点数(归一化后为概率),sum为其总和
281
n += pixelNum[k]; //n为图象总的点数,归一化后就是累积概率
282
}
283 284
fmax = -1.0; //类间方差sb不可能为负,所以fmax初始值为-1不影响计算的进行
285
n1 = 0;
286
for (k = 0; k < 256; k++) //对每个灰度(从0到255)计算一次分割后的类间方差sb
287
{
288
n1 += pixelNum[k]; //n1为在当前阈值遍前景图象的点数
289
if (n1 == 0) { continue; } //没有分出前景后景
290
n2 = n - n1; //n2为背景图象的点数
291
if (n2 == 0) { break; } //n2为0表示全部都是后景图象,与n1=0情况类似,之后的遍历不可能使前景点数增加,所以此时可以退出循环
292
csum += (double)k * pixelNum[k]; //前景的“灰度的值*其点数”的总和
293
m1 = csum / n1; //m1为前景的平均灰度
294
m2 = (sum - csum) / n2; //m2为背景的平均灰度
295
sb = (double)n1 * (double)n2 * (m1 - m2) * (m1 - m2); //sb为类间方差
296
if (sb > fmax) //如果算出的类间方差大于前一次算出的类间方差
297
{
298
fmax = sb; //fmax始终为最大类间方差(otsu)
299
threshValue = k; //取最大类间方差时对应的灰度的k就是最佳阈值
300
}
301
}
302
return threshValue;
303
}
304 305
/// <summary>
306
/// 去掉杂点(适合杂点/杂线粗为1)
307
/// </summary>
308
/// <param name="dgGrayValue">背前景灰色界限</param>
309
/// <returns></returns>
310
public void ClearNoise(int dgGrayValue, int MaxNearPoints)
311
{
312
Color piexl;
313
int nearDots = 0;
314
//逐点判断
315
for (int i = 0; i < bmpobj.Width; i++)
316
for (int j = 0; j < bmpobj.Height; j++)
317
{
318
piexl = bmpobj.GetPixel(i, j);
319
if (piexl.R < dgGrayValue)
320
{
321
nearDots = 0;
322
//判断周围8个点是否全为空
323
if (i == 0 || i == bmpobj.Width - 1 || j == 0 || j == bmpobj.Height - 1) //边框全去掉
324
{
325
bmpobj.SetPixel(i, j, Color.FromArgb(255, 255, 255));
326
}
327
else
328
{
329
if (bmpobj.GetPixel(i - 1, j - 1).R < dgGrayValue) nearDots++;
330
if (bmpobj.GetPixel(i, j - 1).R < dgGrayValue) nearDots++;
331
if (bmpobj.GetPixel(i + 1, j - 1).R < dgGrayValue) nearDots++;
332
if (bmpobj.GetPixel(i - 1, j).R < dgGrayValue) nearDots++;
333
if (bmpobj.GetPixel(i + 1, j).R < dgGrayValue) nearDots++;
334
if (bmpobj.GetPixel(i - 1, j + 1).R < dgGrayValue) nearDots++;
335
if (bmpobj.GetPixel(i, j + 1).R < dgGrayValue) nearDots++;
336
if (bmpobj.GetPixel(i + 1, j + 1).R < dgGrayValue) nearDots++;
337
}
338 339
if (nearDots < MaxNearPoints)
340
bmpobj.SetPixel(i, j, Color.FromArgb(255, 255, 255)); //去掉单点 && 粗细小3邻边点
341
}
342
else //背景
343
bmpobj.SetPixel(i, j, Color.FromArgb(255, 255, 255));
344
}
345
}
346 347
/// <summary>
348
/// 3×3中值滤波除杂
349
/// </summary>
350
/// <param name="dgGrayValue"></param>
351
public void ClearNoise(int dgGrayValue)
352
{
353
int x, y;
354
byte[] p = new byte[9]; //最小处理窗口3*3
355
byte s;
356
//byte[] lpTemp=new BYTE[nByteWidth*nHeight];
357
int i, j;
358
//--!!!!!!!!!!!!!!下面开始窗口为3×3中值滤波!!!!!!!!!!!!!!!!
359
for (y = 1; y < bmpobj.Height - 1; y++) //--第一行和最后一行无法取窗口
360
{
361
for (x = 1; x < bmpobj.Width - 1; x++)
362
{
363
//取9个点的值
364
p[0] = bmpobj.GetPixel(x - 1, y - 1).R;
365
p[1] = bmpobj.GetPixel(x, y - 1).R;
366
p[2] = bmpobj.GetPixel(x + 1, y - 1).R;
367
p[3] = bmpobj.GetPixel(x - 1, y).R;
368
p[4] = bmpobj.GetPixel(x, y).R;
369
p[5] = bmpobj.GetPixel(x + 1, y).R;
370
p[6] = bmpobj.GetPixel(x - 1, y + 1).R;
371
p[7] = bmpobj.GetPixel(x, y + 1).R;
372
p[8] = bmpobj.GetPixel(x + 1, y + 1).R;
373
//计算中值
374
for (j = 0; j < 5; j++)
375
{
376
for (i = j + 1; i < 9; i++)
377
{
378
if (p[j] > p[i])
379
{
380
s = p[j];
381
p[j] = p[i];
382
p[i] = s;
383
}
384
}
385
}
386
// if (bmpobj.GetPixel(x, y).R < dgGrayValue)
387
bmpobj.SetPixel(x, y, Color.FromArgb(p[4], p[4], p[4])); //给有效值付中值
388
}
389
}
390
}
391 392
/// <summary>
393
/// 该函数用于对图像进行腐蚀运算。结构元素为水平方向或垂直方向的三个点,
394
/// 中间点位于原点;或者由用户自己定义3×3的结构元素。
395
/// </summary>
396
/// <param name="dgGrayValue">前后景临界值</param>
397
/// <param name="nMode">腐蚀方式:0表示水平方向,1垂直方向,2自定义结构元素。</param>
398
/// <param name="structure"> 自定义的3×3结构元素</param>
399
public void ErosionPic(int dgGrayValue, int nMode, bool[,] structure)
400
{
401
int lWidth = bmpobj.Width;
402
int lHeight = bmpobj.Height;
403
Bitmap newBmp = new Bitmap(lWidth, lHeight);
404 405
int i, j, n, m; //循环变量
406 407
if (nMode == 0)
408
{
409
//使用水平方向的结构元素进行腐蚀
410
// 由于使用1×3的结构元素,为防止越界,所以不处理最左边和最右边
411
// 的两列像素
412
for (j = 0; j < lHeight; j++)
413
{
414
for (i = 1; i < lWidth - 1; i++)
415
{
416
//目标图像中的当前点先赋成黑色
417
newBmp.SetPixel(i, j, Color.Black);
418 419
//如果源图像中当前点自身或者左右有一个点不是黑色,
420
//则将目标图像中的当前点赋成白色
421
if (bmpobj.GetPixel(i - 1, j).R > dgGrayValue ||
422
bmpobj.GetPixel(i, j).R > dgGrayValue ||
423
bmpobj.GetPixel(i + 1, j).R > dgGrayValue)
424
newBmp.SetPixel(i, j, Color.White);
425
}
426
}
427
}
428
else if (nMode == 1)
429
{
430
//使用垂真方向的结构元素进行腐蚀
431
// 由于使用3×1的结构元素,为防止越界,所以不处理最上边和最下边
432
// 的两行像素
433
for (j = 1; j < lHeight - 1; j++)
434
{
435
for (i = 0; i < lWidth; i++)
436
{
437
//目标图像中的当前点先赋成黑色
438
newBmp.SetPixel(i, j, Color.Black);
439 440
//如果源图像中当前点自身或者左右有一个点不是黑色,
441
//则将目标图像中的当前点赋成白色
442
if (bmpobj.GetPixel(i, j - 1).R > dgGrayValue ||
443
bmpobj.GetPixel(i, j).R > dgGrayValue ||
444
bmpobj.GetPixel(i, j + 1).R > dgGrayValue)
445
newBmp.SetPixel(i, j, Color.White);
446
}
447
}
448
}
449
else
450
{
451
if (structure.Length != 9) //检查自定义结构
452
return;
453
//使用自定义的结构元素进行腐蚀
454
// 由于使用3×3的结构元素,为防止越界,所以不处理最左边和最右边
455
// 的两列像素和最上边和最下边的两列像素
456
for (j = 1; j < lHeight - 1; j++)
457
{
458
for (i = 1; i < lWidth - 1; i++)
459
{
460
//目标图像中的当前点先赋成黑色
461
newBmp.SetPixel(i, j, Color.Black);
462
//如果原图像中对应结构元素中为黑色的那些点中有一个不是黑色,
463
//则将目标图像中的当前点赋成白色
464
for (m = 0; m < 3; m++)
465
{
466
for (n = 0; n < 3; n++)
467
{
468
if (!structure[m, n])
469
continue;
470
if (bmpobj.GetPixel(i + m - 1, j + n - 1).R > dgGrayValue)
471
{
472
newBmp.SetPixel(i, j, Color.White);
473
break;
474
}
475
}
476
}
477
}
478
}
479
}
480
bmpobj = newBmp;
481
}
482 483
/// <summary>
484
/// 该函数用于对图像进行细化运算。要求目标图像为灰度图像
485
/// </summary>
486
/// <param name="dgGrayValue"></param>
487
public void ThiningPic(int dgGrayValue)
488
{
489
int lWidth = bmpobj.Width;
490
int lHeight = bmpobj.Height;
491
// Bitmap newBmp = new Bitmap(lWidth, lHeight);
492 493
bool bModified; //脏标记
494
int i, j, n, m; //循环变量
495 496
//四个条件
497
bool bCondition1;
498
bool bCondition2;
499
bool bCondition3;
500
bool bCondition4;
501 502
int nCount; //计数器
503
int[,] neighbour = new int[5, 5]; //5×5相邻区域像素值
504 505 506 507
bModified = true;
508
while (bModified)
509
{
510
bModified = false;
511 512
//由于使用5×5的结构元素,为防止越界,所以不处理外围的几行和几列像素
513
for (j = 2; j < lHeight - 2; j++)
514
{
515
for (i = 2; i < lWidth - 2; i++)
516
{
517
bCondition1 = false;
518
bCondition2 = false;
519
bCondition3 = false;
520
bCondition4 = false;
521 522
if (bmpobj.GetPixel(i, j).R > dgGrayValue)
523
{
524
if (bmpobj.GetPixel(i, j).R < 255)
525
bmpobj.SetPixel(i, j, Color.White);
526
continue;
527
}
528 529
//获得当前点相邻的5×5区域内像素值,白色用0代表,黑色用1代表
530
for (m = 0; m < 5; m++)
531
{
532
for (n = 0; n < 5; n++)
533
{
534
neighbour[m, n] = bmpobj.GetPixel(i + m - 2, j + n - 2).R < dgGrayValue ? 1 : 0;
535
}
536
}
537 538
//逐个判断条件。
539
//判断2<=NZ(P1)<=6
540
nCount = neighbour[1, 1] + neighbour[1, 2] + neighbour[1, 3]
541
+ neighbour[2, 1] + neighbour[2, 3] +
542
+neighbour[3, 1] + neighbour[3, 2] + neighbour[3, 3];
543
if (nCount >= 2 && nCount <= 6)
544
{
545
bCondition1 = true;
546
}
547 548
//判断Z0(P1)=1
549
nCount = 0;
550
if (neighbour[1, 2] == 0 && neighbour[1, 1] == 1)
551
nCount++;
552
if (neighbour[1, 1] == 0 && neighbour[2, 1] == 1)
553
nCount++;
554
if (neighbour[2, 1] == 0 && neighbour[3, 1] == 1)
555
nCount++;
556
if (neighbour[3, 1] == 0 && neighbour[3, 2] == 1)
557
nCount++;
558
if (neighbour[3, 2] == 0 && neighbour[3, 3] == 1)
559
nCount++;
560
if (neighbour[3, 3] == 0 && neighbour[2, 3] == 1)
561
nCount++;
562
if (neighbour[2, 3] == 0 && neighbour[1, 3] == 1)
563
nCount++;
564
if (neighbour[1, 3] == 0 && neighbour[1, 2] == 1)
565
nCount++;
566
if (nCount == 1)
567
bCondition2 = true;
568 569
//判断P2*P4*P8=0 or Z0(p2)!=1
570
if (neighbour[1, 2] * neighbour[2, 1] * neighbour[2, 3] == 0)
571
{
572
bCondition3 = true;
573
}
574
else
575
{
576
nCount = 0;
577
if (neighbour[0, 2] == 0 && neighbour[0, 1] == 1)
578
nCount++;
579
if (neighbour[0, 1] == 0 && neighbour[1, 1] == 1)
580
nCount++;
581
if (neighbour[1, 1] == 0 && neighbour[2, 1] == 1)
582
nCount++;
583
if (neighbour[2, 1] == 0 && neighbour[2, 2] == 1)
584
nCount++;
585
if (neighbour[2, 2] == 0 && neighbour[2, 3] == 1)
586
nCount++;
587
if (neighbour[2, 3] == 0 && neighbour[1, 3] == 1)
588
nCount++;
589
if (neighbour[1, 3] == 0 && neighbour[0, 3] == 1)
590
nCount++;
591
if (neighbour[0, 3] == 0 && neighbour[0, 2] == 1)
592
nCount++;
593
if (nCount != 1)
594
bCondition3 = true;
595
}
596 597
//判断P2*P4*P6=0 or Z0(p4)!=1
598
if (neighbour[1, 2] * neighbour[2, 1] * neighbour[3, 2] == 0)
599
{
600
bCondition4 = true;
601
}
602
else
603
{
604
nCount = 0;
605
if (neighbour[1, 1] == 0 && neighbour[1, 0] == 1)
606
nCount++;
607
if (neighbour[1, 0] == 0 && neighbour[2, 0] == 1)
608
nCount++;
609
if (neighbour[2, 0] == 0 && neighbour[3, 0] == 1)
610
nCount++;
611
if (neighbour[3, 0] == 0 && neighbour[3, 1] == 1)
612
nCount++;
613
if (neighbour[3, 1] == 0 && neighbour[3, 2] == 1)
614
nCount++;
615
if (neighbour[3, 2] == 0 && neighbour[2, 2] == 1)
616
nCount++;
617
if (neighbour[2, 2] == 0 && neighbour[1, 2] == 1)
618
nCount++;
619
if (neighbour[1, 2] == 0 && neighbour[1, 1] == 1)
620
nCount++;
621
if (nCount != 1)
622
bCondition4 = true;
623
}
624 625
if (bCondition1 && bCondition2 && bCondition3 && bCondition4)
626
{
627
bmpobj.SetPixel(i, j, Color.White);
628
bModified = true;
629
}
630
else
631
{
632
bmpobj.SetPixel(i, j, Color.Black);
633
}
634
}
635
}
636
}
637
// 复制细化后的图像
638
// bmpobj = newBmp;
639
}
640 641
/// <summary>
642
/// 锐化要启用不安全代码编译
643
/// </summary>
644
/// <param name="val">锐化程度。取值[0,1]。值越大锐化程度越高</param>
645
/// <returns>锐化后的图像</returns>
646
public void Sharpen(float val)
647
{
648
int w = bmpobj.Width;
649
int h = bmpobj.Height;
650
Bitmap bmpRtn = new Bitmap(w, h, PixelFormat.Format24bppRgb);
651
BitmapData srcData = bmpobj.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);
652
BitmapData dstData = bmpRtn.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.WriteOnly, PixelFormat.Format24bppRgb);
653
unsafe
654
{
655
byte* pIn = (byte*)srcData.Scan0.ToPointer();
656
byte* pOut = (byte*)dstData.Scan0.ToPointer();
657
int stride = srcData.Stride;
658
byte* p;
659 660
for (int y = 0; y < h; y++)
661
{
662
for (int x = 0; x < w; x++)
663
{
664
//取周围9点的值。位于边缘上的点不做改变。
665
if (x == 0 || x == w - 1 || y == 0 || y == h - 1)
666
{
667
//不做
668
pOut[0] = pIn[0];
669
pOut[1] = pIn[1];
670
pOut[2] = pIn[2];
671
}
672
else
673
{
674
int r1, r2, r3, r4, r5, r6, r7, r8, r0;
675
int g1, g2, g3, g4, g5, g6, g7, g8, g0;
676
int b1, b2, b3, b4, b5, b6, b7, b8, b0;
677 678
float vR, vG, vB;
679 680
//左上
681
p = pIn - stride - 3;
682
r1 = p[2];
683
g1 = p[1];
684
b1 = p[0];
685 686
//正上
687
p = pIn - stride;
688
r2 = p[2];
689
g2 = p[1];
690
b2 = p[0];
691 692
//右上
693
p = pIn - stride + 3;
694
r3 = p[2];
695
g3 = p[1];
696
b3 = p[0];
697 698
//左侧
699
p = pIn - 3;
700
r4 = p[2];
701
g4 = p[1];
702
b4 = p[0];
703 704
//右侧
705
p = pIn + 3;
706
r5 = p[2];
707
g5 = p[1];
708
b5 = p[0];
709 710
//右下
711
p = pIn + stride - 3;
712
r6 = p[2];
713
g6 = p[1];
714
b6 = p[0];
715 716
//正下
717
p = pIn + stride;
718
r7 = p[2];
719
g7 = p[1];
720
b7 = p[0];
721 722
//右下
723
p = pIn + stride + 3;
724
r8 = p[2];
725
g8 = p[1];
726
b8 = p[0];
727 728
//自己
729
p = pIn;
730
r0 = p[2];
731
g0 = p[1];
732
b0 = p[0];
733 734
vR = (float)r0 - (float)(r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8) / 8;
735
vG = (float)g0 - (float)(g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8) / 8;
736
vB = (float)b0 - (float)(b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8) / 8;
737 738
vR = r0 + vR * val;
739
vG = g0 + vG * val;
740
vB = b0 + vB * val;
741 742
if (vR > 0)
743
{
744
vR = Math.Min(255, vR);
745
}
746
else
747
{
748
vR = Math.Max(0, vR);
749
}
750 751
if (vG > 0)
752
{
753
vG = Math.Min(255, vG);
754
}
755
else
756
{
757
vG = Math.Max(0, vG);
758
}
759 760
if (vB > 0)
761
{
762
vB = Math.Min(255, vB);
763
}
764
else
765
{
766
vB = Math.Max(0, vB);
767
}
768 769
pOut[0] = (byte)vB;
770
pOut[1] = (byte)vG;
771
pOut[2] = (byte)vR;
772
}
773
pIn += 3;
774
pOut += 3;
775
}// end of x
776
pIn += srcData.Stride - w * 3;
777
pOut += srcData.Stride - w * 3;
778
} // end of y
779
}
780
bmpobj.UnlockBits(srcData);
781
bmpRtn.UnlockBits(dstData);
782
bmpobj = bmpRtn;
783
}
784 785
/// <summary>
786
/// 图片二值化
787
/// </summary>
788
/// <param name="hsb"></param>
789
public void BitmapTo1Bpp(Double hsb)
790
{
791
int w = bmpobj.Width;
792
int h = bmpobj.Height;
793
Bitmap bmp = new Bitmap(w, h, PixelFormat.Format1bppIndexed);
794
BitmapData data = bmp.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.ReadWrite, PixelFormat.Format1bppIndexed);
795
for (int y = 0; y < h; y++)
796
{
797
byte[] scan = new byte[(w + 7) / 8];
798
for (int x = 0; x < w; x++)
799
{
800
Color c = bmpobj.GetPixel(x, y);
801
if (c.GetBrightness() >= hsb) scan[x / 8] |= (byte)(0x80 >> (x % 8));
802
}
803
Marshal.Copy(scan, 0, (IntPtr)((int)data.Scan0 + data.Stride * y), scan.Length);
804
}
805
bmp.UnlockBits(data);
806
bmpobj = bmp;
807
}
808
}
809
}
C# 验证识别基类的更多相关文章
- 本版本延续MVC中的统一验证机制~续的这篇文章,本篇主要是对验证基类的扩展和改善(转)
本版本延续MVC中的统一验证机制~续的这篇文章,本篇主要是对验证基类的扩展和改善 namespace Web.Mvc.Extensions { #region 验证基类 /// <summary ...
- MVC的基类
设计一个验证用户身份是否登陆的基类BaseController /// <summary> /// 所有需要进行登录控制的控制器基类 /// </summary> public ...
- iOS控制器之基类设计
题记 在进入新公司后.经过这一个月的重构项目,终于把项目做到了个人相对满意的程度(还有一种不满意的叫老板的需求,提过多次意见也没用= =!).在这次重构中按照以前的思路设计出了个人觉得比较适用的一个基 ...
- 【c++】虚基类
何要使用虚基类: 为何避免多层继承中出项多个公共基类所造成的歧义现象 虚基类用法 派生类继承基类时,加上一个virtual关键词则为虚拟基类继承. 在上图程序运行中,我们发现class bass的构造 ...
- Entity Framework 实体框架的形成之旅--为基础类库接口增加单元测试,对基类接口进行正确性校验(10)
本篇介绍Entity Framework 实体框架的文章已经到了第十篇了,对实体框架的各个分层以及基类的封装管理,已经臻于完善,为了方便对基类接口的正确性校验,以及方便对以后完善或扩展接口进行回归测试 ...
- 基类,派生类,内存分配情况 .xml
pre{ line-height:1; color:#1e1e1e; background-color:#d2d2d2; font-size:16px;}.sysFunc{color:#627cf6; ...
- Effective C++学习笔记 条款07:为多态基类声明virtual析构函数
一.C++明确指出:当derived class对象经由一个base class指针被删除,而该base class带着一个non-virtual析构函数,其结果未定义——实际执行时通常发生的是对象的 ...
- 【c++内存分布系列】虚基类表
虚基类表相对于虚函数表要稍微难理解些,故单独提出来. 虚函数表是在对象生成时插入一个虚函数指针,指向虚函数表,这个表中所列就是虚函数. 虚基类表原理与虚函数表类似,不过虚基类表的内容有所不同.表的第一 ...
- c++ 派生类向基类转换的可访问性
对于c++面向对象一直很疑惑,这次决定下功夫把它弄明白 一.派生类和基类之间的类型转换 首先理解,派生类含有基类的所有成分,只不过有些就算在派生类的成员函数也不能访问而已. (1)派生类和基类的自动转 ...
随机推荐
- 【Java线程】锁机制:synchronized、Lock、Condition
http://www.infoq.com/cn/articles/java-memory-model-5 深入理解Java内存模型(五)——锁 http://www.ibm.com/develope ...
- [Swust OJ 191]--迷宫逃离(打表搜索)
题目链接:http://acm.swust.edu.cn/problem/191/ Time limit(ms): 1000 Memory limit(kb): 65535 江鸟突然想到了一个 ...
- Ajax辅助方法
目前为止,我们已经考察了如何编写客户端JavaScript代码,以发送并接受服务器的数据.然而,在使用ASP.NET MVC时,还有另一种方法可用来执行Ajax调用,这就是Ajax辅助方法. Ajax ...
- oschina插件和扩展
Eclipse插件 2551FireFox插件 14IE插件 19Prototype扩展 220Chrome插件/扩展 72WordPress插件 33NetBeans插件 12IDEA插件 25Xc ...
- 神奇的矩阵 NOI模拟题
神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...
- JAVA思维导图系列:多线程0基础
感觉自己JAVA基础太差了,又一次看一遍,已思维导图的方式记录下来 多线程0基础 进程 独立性 拥有独立资源 独立的地址 无授权其它进程无法訪问 动态性 与程序的差别是:进程是动态的指令集合,而程序是 ...
- Android实现 再按一次退出 的三种方法 durationTime、timerTask 和Handler
目前很多Android应用都会实现按返回键时提示“再按一次推退出” 在这篇文章中总结了各家的方法,一般都是监听Activity的onKeyDown 或者onBackPressed方法 方法一: 直接计 ...
- webform--常用的控件
一.简单控件 1.Lable——标签:在网页中呈现出来的时候会变成span标签 属性:Text——标签上的文字 BackColor,ForeColor——背景色,前景色 Font——字体 Bold- ...
- lua 安装配置
LUA用纯C语言编写 1.相关安装配置 Last login: Thu Jul 9 08:42:02 on console nixinshengdeMacBook-Pro:~ nixinsheng$ ...
- BZOJ 1704: [Usaco2007 Mar]Face The Right Way 自动转身机( 贪心 )
贪心...先枚举k, 然后从左往右扫一遍, 发现位置p的牛的状态不符合就将 [p, p + k ) 的牛都转身, 假如p + k - 1 已经超过了最右边牛的位置那这个k就不符合要求. 符合要求的就可 ...