Alice and Bob

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1130 Accepted Submission(s): 407

Problem Description
Alice and Bob are very smart guys and they like to play all kinds of games in their spare time. The most amazing thing is that they always find the best strategy, and that's why they feel bored again and again. They just invented a new game, as they usually did.

The rule of the new game is quite simple. At the beginning of the game, they write down N random positive integers, then they take turns (Alice first) to either:

1. Decrease a number by one.

2. Erase any two numbers and write down their sum.

Whenever a number is decreased to 0, it will be erased automatically. The game ends when all numbers are finally erased, and the one who cannot play in his(her) turn loses the game.

Here's the problem: Who will win the game if both use the best strategy? Find it out quickly, before they get bored of the game again!
 
Input
The first line contains an integer T(1 <= T <= 4000), indicating the number of test cases.

Each test case contains several lines.

The first line contains an integer N(1 <= N <= 50).

The next line contains N positive integers A
1 ....A
N(1 <= A
i <= 1000), represents the numbers they write down at the beginning of the game.
 
Output
For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is either "Alice" or "Bob".
 
Sample Input
3
3
1 1 2
2
3 4
3
2 3 5
 
Sample Output
Case #1: Alice
Case #2: Bob
Case #3: Bob
博弈,这题,对于是1的堆, 我们可以单独处理,而对于,其它的堆,我们直接加起来,比奇偶,用dp[i][j]表是有i个是1的堆,其它的堆合在一起,再比奇偶,最后,如果等于1就是先取的胜,否刚后取的胜,这样,我们发现,只有是1的堆才会影响最后的结果,如果,这个堆大于1,那个此时会胜的人,一定会,先把这些堆先合,最后再比奇偶,而要败的人,没有任何办法,此时,他就想办法,改变1的堆,因为合并1的堆,相当于操作两次,会变最后的结果,这样,所有的人,都要抢是1的堆,是1的堆,总共有4种操作,1:是直操拿是1的堆,2:合并1的堆到非1的堆,3取不是1的堆4:合并两个非1的堆 ,此时有两种情况,第一,全都是1,这时,只能加2不能合并到非1的堆,第二,有非1的堆,那么,两个1的堆加再合到一个非1的堆加3,这样全部都到位了!
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
int dp[55][60000];
int dfs(int n,int p){
if(dp[n][p]!=-1)return dp[n][p];
if(p==1)return dp[n][p]=dfs(n+1,0);
dp[n][p]=0;
if(n>0&&!dfs(n-1,p)) return dp[n][p]=1;
if(p>1&&!dfs(n,p-1)) return dp[n][p]=1;
if(n>0&&p&&!dfs(n-1,p+1)) return dp[n][p]=1;
if(n>=2&&((p&&!dfs(n-2,p+3))||(!p&&!dfs(n-2,2)))) return dp[n][p]=1;
return dp[n][p];
}
int main()
{
int tcase,n,i,pri,k,ans,tt=1;
mem(dp,-1);
scanf("%d",&tcase);
while(tcase--){
k=0;ans=0;
scanf("%d",&n);
for(i=0;i<n;i++){
scanf("%d",&pri);
if(pri==1)k++;
else ans+=pri+1;
}
if(ans)ans--;
printf("Case #%d: ",tt++);
if(dfs(k,ans))printf("Alice\n");
else printf("Bob\n");
}
return 0;
}

hdu4111 Alice and Bob的更多相关文章

  1. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  2. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  3. Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...

  4. sdutoj 2608 Alice and Bob

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2608 Alice and Bob Time L ...

  5. hdu 4268 Alice and Bob

    Alice and Bob Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Tota ...

  6. 2014 Super Training #6 A Alice and Bob --SG函数

    原题: ZOJ 3666 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3666 博弈问题. 题意:给你1~N个位置,N是最 ...

  7. ACdream 1112 Alice and Bob(素筛+博弈SG函数)

    Alice and Bob Time Limit:3000MS     Memory Limit:128000KB     64bit IO Format:%lld & %llu Submit ...

  8. 位运算 2013年山东省赛 F Alice and Bob

    题目传送门 /* 题意: 求(a0*x^(2^0)+1) * (a1 * x^(2^1)+1)*.......*(an-1 * x^(2^(n-1))+1) 式子中,x的p次方的系数 二进制位运算:p ...

  9. SDUT 2608:Alice and Bob

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Alice and Bob like playing ...

随机推荐

  1. JBoss 系列九十九:Rest WebService jBPM 6 集成演示样例

    概述 jBPM 6 提供 Rest API 供第三方应用整合使用 jBPM 6,本文演示假设通过 Rest API: 启动流程 获取流程实例信息 启动 User Task 完毕 User Task j ...

  2. 大数据笔记01:大数据之Hadoop简介

    1. 背景 随着大数据时代来临,人们发现数据越来越多.但是如何对大数据进行存储与分析呢?   单机PC存储和分析数据存在很多瓶颈,包括存储容量.读写速率.计算效率等等,这些单机PC无法满足要求. 2. ...

  3. HDU -1284钱币兑换

    这个是完全背包的基础题, 模拟换钱, 刚开始状态方程写错了,我直接写dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3], 然后想了想感觉太大了,不太对,后来看网上的代码 ...

  4. SpringMVC05使用注解的方式

    <body> <a href="add">新增</a> <a href="update">修改</a> ...

  5. OD: SafeSEH

    SafeSEH 对异常处理的保护原理 在 Windows XP sp2 以及之后的版本中,微软引入了 S.E.H 校验机制 SafeSEH.SafeSEH 需要 OS 和 Compiler 的双重支持 ...

  6. sql sever 随机查询

    Select  *  From TableName Order By NewID() NewID()函数将创建一个 uniqueidentifier 类型的唯一值.上面的语句实现效果是从Table中随 ...

  7. CentOS 6.4搭建zabbix

    系统环境:CentOS 6.4 64bit Zabbix版本:zabbix 2.2.3 前提条件:已安装好LNMP环境 一.服务端: 1.  下载zabbix安装包zabbix-2.2.3.tar.g ...

  8. MySQL慢查询详解

    分析MySQL语句查询性能的方法除了使用 EXPLAIN 输出执行计划,还可以让MySQL记录下查询超过指定时间的语句,我们将超过指定时间的SQL语句查询称为“慢查询”.   查看/设置“慢查询”的时 ...

  9. app.config动态修改及读取

    1.添加应用程序配置文件 右键点击项目,选择“添加”→“添加新建项”→“添加应用程序配置文件”将其添加到项目中. 2.设置配置文件 <?xmlversion="1.0"enc ...

  10. linux打包/解压-tar

    tar命令: 压缩: tar -zcvf  打包的文件名.tar.gz 打包的文件 解压: tar -zxvf  要压缩的文件名.tar.gz