http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_heap_for_system_reliability.pdf

1. Introduction

The stack and the heap are fundamental to an embedded system. Setting up the stack and the heap
properly is essential to system stability and reliability. Incorrectly used, they may cause your system to
wreak havoc in the strangest ways. Stack and heap memory must be allocated statically by the
programmer. Calculating the stack space is notoriously difficult for all but the smallest embedded
systems, and underestimating stack usage can lead to serious runtime errors which can be difficult to
find. On the other hand, overestimating stack usage means a waste of memory resources. Worst case
maximum stack depth is very useful information in most embedded projects, as it greatly simplifies
estimates of how much stack an application will need. Heap memory overflows gracefully but this is of
no real comfort as few embedded applications are able to recover in such extreme out-of-memory
conditions.

2. A short introduction to stack and heap

2.1 Scope

The focus in this article is on reliable stack and heap design, and how to minimize stack and heap in a
safe way.

Desktop systems and embedded systems share some common stack and heap design errors and
considerations, but differ completely in many other aspects. One example of a difference between these
environments is the available memory. Windows and Linux default to 1 and 8 Mbytes of stack space; a
number that can be increased even more. Heap space is only limited by the available physical memory
and/or page file size. Embedded systems, on the other hand, have very limited memory resources
especially when it comes to RAM space. There is clearly a need to minimize stack and heap in this
restricted memory environment. Common to small embedded systems is that there is no virtual memory
mechanism; allocation of stack, heap and global data (i.e. variables, TCP/IP, USB buffers, etc) is static
and performed at the time when the application is built.

We will address the special issues that arise in small embedded systems. We will not cover how to
protect the stack and heap against attacks. This is a hot topic on desktop and mobile devices and is
likely to be a threat to embedded systems as well in the future, if it isn’t already.

2.2 Stretching the limits

Stretching the limits in everyday life can sometimes be rewarding but can also put you in trouble.
Stretching the limits in programming when it comes to allocated data will definitely put you in trouble.
Luckily, the trouble may hit you directly or during system testing, but it might also manifest itself when it
is too late and the product has been delivered to thousands of customers or deployed in a remote
environment.

Overflowing allocated data can occur in all three storage areas; global, stack and heap memory. Writing
to arrays or pointer references can cause accesses outside of the memory allocated to the object.
Some array accesses can be validated by static analysis, for example by the compiler itself or a MISRA
C checker:

int array[];
array[] = 0x1234;

When the array index is a variable expression, static analysis can no longer find all problems. Pointer
references are also hard to trace by static analysis:

int* p = malloc( * sizeof(int));
p += ;
*p = 0x1234;

Runtime methods to catch object overflow errors have been available for desktop systems for a long
time, Purify, Insure++, and Valgrind, to name a few. These tools work by instrumenting the application
code to validate memory references at runtime. This comes at the price of slowing down application
execution speed dramatically and increasing code size, and has thus not become a usable method for
small embedded systems.

2.3 Stack

The stack is the memory area where a program stores, for example:

• local variables
• return addresses
• function arguments
• compiler temporaries
• interrupt contexts
The life span of variables on the stack is limited to the duration of the
function. As soon as the function returns, the used stack memory will be free
for use by subsequent function calls.

Stack memory has to be allocated statically by the programmer. The stack
usually grows downwards in memory and if the memory area allocated for
the stack isn’t large enough, the executing code writes to the area allocated
below the stack and an overflow situation occurs. The area written to is
usually the area where global and static variables are stored. So,
underestimated stack usage can lead to serious runtime errors like
overwritten variables, wild pointers, and corrupted return addresses. All of
these errors can be very difficult to find. On the other hand, overestimating
stack usage means a waste of memory resources.

We will highlight some methods that can be used to reliably calculate the
required stack size and detect stack related problems.

2.4 Heap

The heap is where the dynamic memory of the system is located. Dynamic memory and the heap can in
many cases be considered optional in small embedded systems. Dynamic memory makes memory
sharing possible between different pieces of a program. When one module does not need its allocated
memory anymore, it simply returns it to the memory allocator to be reused by some other module.

Some examples of data that is placed on the heap include:

• Transient data objects
• C++ new/delete
• C++ STL containers
• C++ exceptions
Calculating heap space ranges from difficult to impossible in larger systems, because of the dynamic
behavior of the application. Moreover there is not much tool support in the embedded world for
measuring heap utilization, but we will discuss some methods.

It is important to maintain heap integrity. Allocated data space is typically interspersed with critical
memory allocator housekeeping data. Bad use of allocated data space will not only risk the corruption of
other data space but may also corrupt the entire memory allocator and most likely crash the application.
We will discuss some methods to aid checking for heap integrity.

Another aspect to consider is that the real-time performance of the heap is not deterministic. Memory
allocation time depends on such factors as previous use and the requested data space size. This is
hardly on the wish list for the cycle-driven embedded developer.

Even if the heap is a ccore topic in this article, the general guideline is to minimize heap usage in small embedded systems.

Mastering stack and heap for system reliability的更多相关文章

  1. 堆栈 & Stack and Heap

    What's the difference between a stack and a heap? The differences between the stack and the heap can ...

  2. JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集

    (转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...

  3. stack与heap、new的内存分配、static对象。(effective c++ 04)

    阅读effective c++ 04 (30页) 提到的static对象和堆与栈对象."不同编译单元内定义的non-local static对象". 了解一下.    目录 sta ...

  4. DSP中-stack和-heap的作用

    -stack           0x00000800-heap            0x00000800 stack - 又称系统栈(system stack),用于: 保存函数调用后的返回地址; ...

  5. 【转】JVM运行原理及JVM中的Stack和Heap的实现过程

    来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...

  6. 图解.NET Stack和Heap的本质区别

    现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...

  7. JVM运行原理及Stack和Heap的实现过程

    Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...

  8. Java虚拟机:JVM中的Stack和Heap

    简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...

  9. 深入Java虚拟机:JVM中的Stack和Heap

    在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...

随机推荐

  1. linux自动获得mac地址,修改网络配置

    1.修改网络配置,自动获得mac地址 删除 /etc/udev/rules.d/70-persistent-net.rules 文件 删除 /etc/sysconfig/network-scripts ...

  2. jmeter-----用户参数和用户定义变量的区别

    在调试脚本的时候,可以使用前置处理器中的用户参数组件进行数据的提供,在该数据中可以使用固定值也可以使用变量值. 如果是固定不变的一些配置项,不需要多个值的时候,也可以使用用户已定义的变量组件. 一.界 ...

  3. print、println的区别

    System.out.print("a");——后面没有换行符 System.out.println("b");——后面有换行符 换行符:\r和\n以及\r\n ...

  4. 简单的oracle sql语句练习

    简单的oracle sql语句练习 求每个部门的平均薪水 select deptno,avg(sal) from emp group by deptno 每个部门同一个职位的最大工资 select d ...

  5. zabbix安装配置(2.4.5)

    这是第一次安装配置,直接遭遇配置文件不明晰的大坑,因在编译阶段未指明配置文件路径,导致zabbix_server启动时直接读取默认的 /usr/local/zabbix/etc/zabbix_serv ...

  6. Proud Merchants HDU - 3466 (思路题--有排序的01背包)

    Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and powerfu ...

  7. Knockout.js(四):自定义绑定

    除了内嵌的绑定,还可以创建一些自定义绑定,封装复杂的逻辑或行为. 注册绑定 添加子属性到ko.bindingHandlers来注册绑定: ko.bindingHandlers.yourBindingN ...

  8. 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 218  Solved: 126 Description 给出一个长度为n的序列A( ...

  9. HNOI2017滚粗记

    DAY0: 高三学长说了考前要么就完全颓废要么就完全学,所以我们就完全开启了颓废模式.上午教练带队去烈士公园游玩,中途机房歌神和QYS一直在谈论如何用LCT动态维护树的直径,ORZORZORZ.... ...

  10. 【贪心】【堆】Gym - 101485A - Assigning Workstations

    题意:有n个人,依次来到机房,给你他们每个人的到达时间和使用时间,你给他们分配电脑,要么新开一台, 要么给他一台别人用完以后没关的.一台电脑会在停止使用M分钟后自动关闭.让你最大化不需要新开电脑的总人 ...