2839: 集合计数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 399  Solved: 217

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

对于100%的数据,1≤N≤1000000;0≤K≤N;

【分析】

  我的容斥好垃圾哦。。。

  答案=至少交集为k-至少交集为k+1+至少交集为k+2

  注意‘至少’的意义。如若不是,那么是不需要容斥的。而是答案=至少交集为k-交集为k+1-交集为k+2-交集为k+3。。。

  算‘至少’好算多了,你只要保证了有k个,后面的东西都随便了。

  

从n个数中选出k个作为交集中的数,是C(n,k),这样的集合共有2^(2^(n-k))-1个

2^(n-k)是包含选定的k个数的可选集合的数量,选取方案有2^(2^(n-k))-1个(不能有空集否则无法保证k个元素)

所以ans=C(n,k)*C(k,k)*(2^(2^(n-k))-1)-C(n,k+1)*C(k+1,k)*2^(2^(n-k-1)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
#define Maxn 1000010
const int Mod=; int pw[Maxn],inv[Maxn],tpw[Maxn]; void init(int n)
{
// tpw[0]=1;for(int i=1;i<=n;i++) tpw[i]=1LL*tpw[i-1]*2%Mod;
pw[]=;for(int i=;i<=n;i++) pw[i]=1LL*pw[i-]*i%Mod;
inv[]=;for(int i=;i<=n;i++) inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
inv[]=;for(int i=;i<=n;i++) inv[i]=1LL*inv[i-]*inv[i]%Mod;
} int qpow(int x,int b,int p)
{
int ans=;
while(b)
{
if(b&) ans=1LL*ans*x%p;
x=1LL*x*x%p;
b>>=;
}
return ans;
} int get_c(int n,int m)
{
return 1LL*pw[n]*inv[n-m]%Mod*inv[m]%Mod;
} int f[Maxn];
int main()
{
int n,k,ans=;
scanf("%d%d",&n,&k);
init(n);
for(int i=n;i>=k;i--)
{
f[i]=1LL*(qpow(,qpow(,n-i,Mod-),Mod)-)*get_c(n,i)%Mod*get_c(i,k)%Mod;
}
for(int i=k+;i<=n;i++)
{
if((i-k)&) f[k]-=f[i];
else f[k]+=f[i];
f[k]%=Mod;
}
f[k]=(f[k]+Mod)%Mod;
printf("%d\n",f[k]);
return ;
}

2017-04-19 10:44:21

【BZOJ 2839】 2839: 集合计数 (容斥原理)的更多相关文章

  1. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  2. 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 229  Solved: 120[Submit][Status][Discuss] ...

  3. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

  4. 【bzoj 2839】集合计数

    权限题 根据广义容斥的套路就很好做了 设\(g_i\)表示交集至少有\(i\)个元素,\(f_i\)表示交集恰好有\(i\)个元素 显然有 \[g_i=\sum_{j=i}^n\binom{j}{i} ...

  5. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  6. 【BZOJ2839】集合计数 容斥原理+组合数

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007 ...

  7. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  8. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  9. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

随机推荐

  1. 《HTML5编程之旅》系列三:WebSockets 技术解析

    本文主要研究HTML5 WebSockets的使用方法,它是HTML5中最强大的通信功能,定义了一个全双工的通信信道,只需Web上的一个Socket即可进行通信,能减少不必要的网络流量并降低网络延迟. ...

  2. [BZOJ1911][BZOJ1912][BZOJ1913]APIO2010解题报告

    特别行动队 Description   这个好像斜率优化不是一般地明显了啊...只不过要分a的正负两种情况考虑是维护上凸还是下凸 /********************************** ...

  3. 使用webpack配置react并添加到flask应用

    学习react,配置是很痛苦的一关,虽然现在有了create-react-app这样方便的工具,但是必须要自己配置一遍,才能更好地进行项目开发. 首先要明确一个概念:react的文件必须经过编译才能被 ...

  4. 修改ecshop后台的管理菜单

    ecshop后台菜单如何去修改,下面ecshop开发中心如何去修改 首先先打开后台菜单项相关文件: admin\includes\inc_menu.php languages\zh_cn\admin\ ...

  5. 使用qt写的简单的图片浏览器

    功能特别简单,支持png,jpg,bmp,gif文件,支持自适应窗口大小,支持放大缩小,旋转功能还有点问题,支持上下按键选择图片 因为初学qt,所以很多东西都不太会,而且c++学的不是太好,没有怎么使 ...

  6. perl6正则 5: [ ] / | / ||

    也就是可以把多种要匹配的写进[ ] 中, 第种用 | 分开就行了. | 与 || 有差别 |的话, 当匹配位置 相同时, 会取最长的, 而 || , 当前面的匹配成功, 后面的就不会再去匹配. / / ...

  7. 使用批处理方式从svn 检出DEMO

    Branching in Subversion¶ FROM:https://dev.geogebra.org/trac/wiki/SubversionBranching Some people wan ...

  8. 64_t6

    texlive-recipebook-svn37026.0-33.fc26.2.noarch.rpm 24-May-2017 15:44 37946 texlive-recipecard-doc-sv ...

  9. 实现UE添加自定义按钮之添加菜单

    1.ueditor.config.js配置文件中配置 2.在ueditor.all.js配置文件中配置点开的的弹框位置 3.在ueditor1_4_3-utf8-jsp\themes\default\ ...

  10. $FFT$(快速傅里叶变换)

    - 概念引入 - 点值表示 对于一个$n - 1$次多项式$A(x)$,可以通过确定$n$个点与值(即$x$和$y$)来表示这唯一的$A(x)$ - 复数 对于一元二次方程 $$x^2 + 1 = 0 ...