BRDF

BRDF(Bidirectional Reflectance Distribution Function)双向反射分布函数,用来描述给定入射方向上的入射辐射度以及反射方向上的出辐射度分布,BRDF提供了一种相对准确的计算方法。

如图所示,点\({P}\)处\({d \omega}\)内的入射辐射度为\({dE_i(p, \omega_i)}\),反射方向\({\omega_o}\)上的出射辐射度为\({dL_o(p, \omega_o)}\)。

BRDF遵循能量守恒原则,入射辐射度与出射辐射度应呈正比例关系,\({dL_o(p, \omega_o)}\)随\({dE_i(p, \omega_i)}\)的增加而增大。可表示为:

\({dL_o(p, \omega_o)} \propto {dE_i(p, \omega_i)}\)

如果用\({f_r(p, \omega_i, \omega_o)}\)表示BRDF比例系数,则:

\({dL_o(p, \omega_o)} = {f_r(p, \omega_i, \omega_o)}{dE_i(p, \omega_i)}\)

在上一篇中,我们知道入射辐射度\({dE_i(p, \omega_i)}={L_i(p, \omega_i) \, \cos \theta_i \, d \omega_i}\),代入上式得:

\({dL_o(p, \omega_o)} = {f_r(p, \omega_i, \omega_o)}{L_i(p, \omega_i) \, \cos \theta_i \, d \omega_i}\)

那么BRDF的比例系数\({f_r(p, \omega_i, \omega_o)}=\frac{dLo(p,\omega_o)}{L_i(p,\omega_i)\, \cos \theta_i \, d\omega_i)}\)

反射辐射度方程

由上面的公式,可知在立体角\({\Omega_i}\)上的反射辐射度的方程为:

\({L_o(p,\omega_o)}=\int_{\Omega_i}{f_r(p, \omega_i, \omega_o)}\, {L_i(p, \omega_i)}\, {\cos \theta_i}\, {d\omega_i}\)

BRDFs的特征

  • 满足交换率:若交换\(\omega_i\)和\(\omega_o\),最终的BRDF值保持不变。就是说若改变光的传播方向,辐射度保持不变。
  • 满足线性特征:物体表面上一点的全部反射辐射度等于各BRDF反射辐射度之和。
  • 遵循能量守恒:现实中不存在可以完全反射物体表面的入射光的材质,部分能量会被物体表面吸收并以其他形式再次反射。所以物体表面面片\({dA}\)上的各向反射辐射度小于总的吸收能量。

反射率Reflatance

反射率是反射通量和入射通量的比例系数。在上一篇讲的关于辐射度的内容中,我们知道\({\Omega_i}\)上的入射辐射度:

\({E_i(p, \, \omega_i)} = \frac{d\Phi_i}{dA} = \int_{\Omega_i} {L_i(p, \, \omega_i) \, \cos \theta_i \, d \omega_i}\)

可推出\({\Omega_i}\)上的入射辐射通量\({d\Phi_i} = {dA} \int_{\Omega_i} {L_i(p, \, \omega_i) \, \cos \theta_i \, d \omega_i}\)

对于\({\Omega_o}\)上的同一面片中的反射通量为:

\({d\Phi_o} = {dA} \int_{\Omega_o}{L_o(p, \, \omega_o) \, \cos \theta_o \, d \omega_o}\)

将上面的反射辐射度方程代入,得:

\({d\Phi_o} = {dA} \int_{\Omega_o}\int_{\Omega_i} {f_r(p, \omega_i, \omega_o)}\, {L_i(p, \omega_i)}\, {\cos \theta_i}\, {d\omega_i} \, {\cos \theta_o \, d \omega_o}\)

反射率\({\rho(p, \Omega_i, \Omega_o)}=\frac{d\Phi_o}{d\Phi_i}\),这样,我们就可以得到反射率的方程:

\({\rho(p, \Omega_i, \Omega_o)}=\frac{d\Phi_o}{d\Phi_i}=\frac{\int_{\Omega_o}\int_{\Omega_i} {f_r(p, \omega_i, \omega_o)}\, {L_i(p, \omega_i)}\, {\cos \theta_i}\, {d\omega_i} \, {\cos \theta_o \, d \omega_o}} {\int_{\Omega_i} L_i(p, \omega_i) \, \cos \theta_i \, \omega_i}\)

最后再附带上一张图作梳理总结

PBR Step by Step(三)BRDFs的更多相关文章

  1. 【转载】MDX Step by Step 读书笔记(三) - Understanding Tuples (理解元组)

    1. 在 Analysis Service 分析服务中,Cube (多维数据集) 是以一个多维数据空间来呈现的.在Cube 中,每一个纬度的属性层次结构都形成了一个轴.沿着这个轴,在属性层次结构上的每 ...

  2. e2e 自动化集成测试 架构 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (三) SqlServer数据库的访问

    上一篇文章“e2e 自动化集成测试 架构 京东 商品搜索 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step 二 图片验证码的识别” ...

  3. Step by step Dynamics CRM 2011升级到Dynamics CRM 2013

    原创地址:http://www.cnblogs.com/jfzhu/p/4018153.html 转载请注明出处 (一)检查Customizations 从2011升级到2013有一些legacy f ...

  4. SQL Server 维护计划实现数据库备份(Step by Step)(转)

    SQL Server 维护计划实现数据库备份(Step by Step) 一.前言 SQL Server 备份和还原全攻略,里面包括了通过SSMS操作还原各种备份文件的图形指导,SQL Server  ...

  5. EF框架step by step(6)—处理实体complex属性

    上一篇的中介绍过了对于EF4.1框架中,实体的简单属性的处理 这一篇介绍一下Code First方法中,实体Complex属性的处理.Complex属性是将一个对象做为另一个对象的属性.映射到数据库中 ...

  6. EF框架step by step(7)—Code First DataAnnotations(1)

    Data annotation特性是在.NET 3.5中引进的,给ASP.NET web应用中的类提供了一种添加验证的方式.Code First允许你使用代码来建立实体框架模型,同时允许用Data a ...

  7. 转载自~浮云比翼:Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)

    Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)   介绍:什么是线程,线程的优点是什么 线程在Unix系统下,通常被称为轻量级的进程,线程虽然不是进程,但却可 ...

  8. e2e 自动化集成测试 架构 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (四) Q 反回调

    上一篇文章“e2e 自动化集成测试 架构 京东 商品搜索 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (三) SqlServ ...

  9. [置顶] hdu2815 扩展Baby step,Giant step入门

    题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...

  10. Struts2+Spring+Hibernate step by step 11 ssh拦截验证用户登录到集成

    注意:该系列文章从教师王健写了一部分ssh集成开发指南 引言: 之前没有引入拦截器之前,我们使用Filter过滤器验证用户是否登录,在使用struts2之后,全然能够使用拦截器,验证用户是否已经登录, ...

随机推荐

  1. Elasticsearch.Net搜索引擎初使用【客户端安装】

    下载windows客户端 官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/net-api/6.x/introduction.ht ...

  2. Code::Blocks之自动打开上次未关闭工作空间

    问题:如何设置Code::Blocks,使每次打开软件时,自动打开上次未关闭的工作空间? 设置(S) -> 环境设置...(E) -> 常规设置: 勾选"在程序启动时" ...

  3. 782C. Andryusha and Colored Balloons DFS

    Link 题意: 给出一棵树,要求为其染色,并且使任意节点都不与距离2以下的节点颜色相同 思路: 直接DFS.由某节点出发的DFS序列,对于其个儿子的cnt数+1,那么因为DFS遍历的性质可保证兄弟结 ...

  4. Qt如何获得窗口的几何信息(Window Geometry)

    一个窗口除去窗框以后,余下部分称为客户区域.获得窗口的几何信息(坐标,长宽等)有以下两组命令: 1. 包括窗框(即整个窗口):x(), y(), frameGeometry(), pos(),  mo ...

  5. 关于变长数组的一点小想法-C语言定义数组但是数组长度不确定怎么办

    很多数据机构,比如栈,链表等,都可以动态分配存储空间 那么数组呢?一般声明时都要指定数组长度,那么数组可以实现动态分配么? 假设数组存的是int型 那么 你先申请10个元素 int* a = (int ...

  6. 可编辑表格(Editable Table)

    需求分析 1.单击table的每个cell后,给cell加上一个尺寸相当的input; 2.input后把value传给cell的innerHTML; 3.失焦后删除input. HTML <! ...

  7. dataTables.js 响应式/package-lock.json 作用/eclipse 目录和工作区建立连接/navcat 导出数据库/vscode 快速进入方法

    下班时间到啦! --下班都是他们的,而我,什么都没有. 什么周五放松日,什么五四青年节,什么都么有.继续总结一下今天遇到的问题. dataTables.js 响应式 使用dataTables.js创建 ...

  8. JWT机制了解

    JWT简介 JSON Web Token(JWT)是一个开放式标准(RFC 7519),它定义了一种紧凑(Compact)且自包含(Self-contained)的方式,用于在各方之间以JSON对象安 ...

  9. c语言学习笔记.指针.

    指针: 一个变量,其值为另一个变量的地址,即,内存位置的直接地址. 声明: int *ptr; /* 一个整型的指针,指针指向的类型是整型 */ double *ptr; /* 一个 double 型 ...

  10. linux 下 genymotion 模拟器不能安装app

    提示: "应用未安装" 解决方法: 下载: Genymotion-ARM-Translation_v1.1.zip 进入genymotion 的tools用adb传进去: ./ad ...