Codeforces 834D The Bakery 【线段树优化DP】*
Codeforces 834D The Bakery
题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献
是第一次做线段树维护DP值的题
感觉还可以,虽然看了一下这题是用线段树维护DP值
然后说思路
有一个很显然的思路是这样的:
dpi,j表示前i个数分成j段的最大贡献
dpi,j=max(dpk,j−1+calc(k+1,i))
然后我们就可以对于每一层j用线段树维护起来
然后就非常愉快地发现dp[i][p]只会从dp[i−1][p−1]之前的DP值进行转移
所以可以发现每次可以错位建立线段树
然后现在考虑怎么维护calc(k+1,i)
我们可以把一段区间的贡献拆成每个点的贡献
显然位置i的数会对左端点位置在pre[i]+1~i的所有点产生加一的贡献(因为考虑的右端点在i)
所以每次判断一下区间加区间求和就好了
#include<bits/stdc++.h>
using namespace std;
#define N 350010
int a[N],b[N];
int dp[N][];
int las[N],pre[N];
int n,k;
namespace Segment_Tree{
#define MAXN N<<2
#define LD (t<<1)
#define RD (t<<1|1)
int maxv[MAXN],add[MAXN];
void pushup(int t){maxv[t]=max(maxv[LD],maxv[RD]);}
void pushdown(int t){
if(add[t]){
maxv[LD]+=add[t],add[LD]+=add[t];
maxv[RD]+=add[t],add[RD]+=add[t];
add[t]=;
}
}
void build(int t,int l,int r){
if(l>r)return;
add[t]=;
if(l==r){maxv[t]=a[l];return;}
int mid=(l+r)>>;
build(LD,l,mid);
build(RD,mid+,r);
pushup(t);
}
void modify(int t,int l,int r,int L,int R){
if(l>r)return;
if(L<=l&&r<=R){maxv[t]++;add[t]++;return;}
pushdown(t);
int mid=(l+r)>>;
if(R<=mid)modify(LD,l,mid,L,R);
else if(L>mid)modify(RD,mid+,r,L,R);
else{
modify(LD,l,mid,L,mid);
modify(RD,mid+,r,mid+,R);
}
pushup(t);
}
int query(int t,int l,int r,int L,int R){
if(l>r)return ;
if(L<=l&&r<=R)return maxv[t];
pushdown(t);
int mid=(l+r)>>;
int ans=;
if(R<=mid)ans=query(LD,l,mid,L,R);
else if(L>mid)ans=query(RD,mid+,r,L,R);
else ans=max(query(LD,l,mid,L,mid),query(RD,mid+,r,mid+,R));
pushup(t);
return ans;
}
};
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
int tot=unique(b+,b+n+)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b+tot+,a[i])-b;
for(int i=;i<=n;i++)pre[i]=las[a[i]],las[a[i]]=i;
for(int i=;i<=n;i++)dp[i][]=dp[i-][]+(int)(pre[i]==);
for(int j=;j<=k;j++){
for(int i=;i<=n;i++)a[i]=dp[i-][j-];
Segment_Tree::build(,,n);
for(int i=;i<=n;i++){
Segment_Tree::modify(,,n,pre[i]+,i);
dp[i][j]=Segment_Tree::query(,,n,,i);
}
}
printf("%d",dp[n][k]);
return ;
}
Codeforces 834D The Bakery 【线段树优化DP】*的更多相关文章
- CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
随机推荐
- 04_zookeeper客户端使用及常用命令
zookeeper客户端的使用 (1) 首先找到zookeeper自带客户端的位置 简单来说,zookeeper自带客户端位于zookeeper安装目录的bin目录下,以我的为例: (2) 运 ...
- npm install 报错 ECONNREFUSED
在window环境下,使用npm install 命令安装任何框架,都会报如下的错误 error code ECONNREFUSED error errno ECONNREFUSED error Fe ...
- angular之自定义 directive
1,指令的创建至少需要一个带有@Directive装饰器修饰的控制器类.@Directive装饰器指定了一个选择器名称,用于指出与此指令相关联的属性的名字. 2,创建一个highlight.direc ...
- pahlcon:循环调度(Dispatch Loop)或跳转
循环调度将会在分发器执行,直到没有action需要执行为止.在上面的例子中,只有一个action 被执行到.现在让我们来看下“forward”(转发)怎样才能在循环调度里提供一个更加复杂的操作流,从而 ...
- javascript 关键词 new都做了写什么
翻译自stackoverflow:http://stackoverflow.com/questions/1646698/what-is-the-new-keyword-in-javascript ne ...
- Android6.0------权限申请RxPermissions
前面写了Android6.0权限介绍和权限单个,多个申请,用的是纯Java代码,本文主要说的是借助第三方库来实现权限申请. 借助第三方库 RxPermissions来申请6.0权限. RxPermis ...
- docker远程仓库镜像推送到本地仓库
#!/bin/bashimageid=(`docker images |grep -v REPOSITORY|awk '{print $3}'`)image=(`docker images |grep ...
- 5分钟弄懂Docker
尽管之前久闻Docker的大名了,但是天资愚钝,对其到底是个啥东西一直摸不清,最近花了一段时间整理了一下,算是整理出一点头绪来. 官网的介绍是这样的: Docker is an open platfo ...
- nyoj——297(期望)
GoroSort 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 Goro has 4 arms. Goro is very strong. You don't me ...
- Caesars Cipher
让上帝的归上帝,凯撒的归凯撒. 下面我们来介绍风靡全球的凯撒密码Caesar cipher,又叫移位密码. 移位密码也就是密码中的字母会按照指定的数量来做移位. 一个常见的案例就是ROT13密码,字母 ...