题意

有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数。得到的新字符和分数由这\(k\)个字符确定。你需要求出你能获得的最大分数。

\(n \leq 300,k \leq 8,1 \leq w_i \leq 10^9\)

分析

参照xyz32768的题解。

区间合并让人想到区间 dp ,而 \(k≤8\) 又让人想到状压 dp 。

我们考虑合二为一。

\(f[l][r][S]\) 表示将区间 \([l,r]\) 内的字符不断合并,最后变成串 \(S\) 的最大收益。

( \(S\) 是一个长度为 \((r−l)mod(k−1)+1\) 的 \(01\) 串)

(由于每次合并会减少 \(k−1\) 个字符,故 \(S\) 的长度固定)

考虑 \(S\) 的每个字符,它们都是由原串的一个区间逐渐压缩成的。

故 \(S\) 的每个字符互相独立,互不影响。

我们就枚举一个 \(mid∈[l,r)\) ,表示 \(S\) 的最后一个字符是由原串的区间 \((mid,r]\) 压缩成的。

这时候就有一个非常传统的区间 dp 转移了!

以下把 \(mg(S,x)\) 定义为 \((S<<1)|x\) ,即在 \(S\) 的后面插入 \(x\) 。 \(x∈{0,1}\) 。

\[f[l][r][mg(S,x)]=max(f[l][r][mg(S,x)],f[l][mid][S]+f[mid+1][r][x])
\]

其中 \(x∈{0,1}\) 。

注意上面针对的是 \(|S|=(r−l)mod(k−1)+1<k−1\) 的情况。

如果 \(|S|=k−1\) ,那么 \([l,mid]\) 会和 \((mid,r]\) 组成一个长度为 \(k\) 的串,还可以再次合并。

故当 \(|S|=k−1\) 时:

\[f[l][r][c[mg(S,x)]]=max(f[l][r][c[mg(S,x)]],f[l][mid][S]+f[mid+1][r][x]+w[mg(S,x)])
\]

同样 \(x∈{0,1}\)

理论复杂度\(O(2^k \cdot n^3)\) ,但实际状态没有那么多。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>T read()
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll; co int MAXN=300,MAXK=8;
int n,k;
int a[MAXN];
int c[1<<MAXK],w[1<<MAXK];
ll f[MAXN][MAXN][1<<MAXK]; int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);read(k);
for(int i=0;i<n;++i)
read(a[i]);
for(int i=0;i<(1<<k);++i)
{
read(c[i]);read(w[i]);
} memset(f,-1,sizeof f);
for(int i=0;i<n;++i)
f[i][i][a[i]] = 0;
for(int i=n-1;i>=0;--i)
for(int j=i+1;j<n;++j)
{
int len = (j - i) % (k - 1) + 1;
if(len > 1)
{
for(int mid = i + len - 2;mid <= j - 1;mid += k - 1)
for(int s = 0;s < (1 << (len - 1));++s)
{
if(f[i][mid][s]==-1)
continue;
if(f[mid+1][j][0]!=-1)
f[i][j][s<<1] = max(f[i][j][s<<1],f[i][mid][s]+f[mid+1][j][0]);
if(f[mid+1][j][1]!=-1)
f[i][j][s<<1|1] = max(f[i][j][s<<1|1],f[i][mid][s]+f[mid+1][j][1]);
}
}
else
{
for(int s = 0;s < (1 << (k - 1));++s)
for(int mid = i + k - 2;mid <= j - 1;mid += k - 1)
{
if(f[i][mid][s]==-1)
continue;
if(f[mid+1][j][0]!=-1)
f[i][j][c[s<<1]]=max(f[i][j][c[s<<1]],f[i][mid][s]+f[mid+1][j][0]+w[s<<1]);
if(f[mid+1][j][1]!=-1)
f[i][j][c[s<<1|1]]=max(f[i][j][c[s<<1|1]],f[i][mid][s]+f[mid+1][j][1]+w[s<<1|1]);
}
}
}
ll ans=-1;
for(int i=0;i<(1<<k);++i)
{
// cerr<<i<<" f="<<f[0][n-1][i]<<endl;
ans=max(ans,f[0][n-1][i]);
}
printf("%lld\n",ans);
return 0;
}

BZOJ4565 [Haoi2016]字符合并的更多相关文章

  1. BZOJ4565 HAOI2016字符合并(区间dp+状压dp)

    设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...

  2. [BZOJ4565][HAOI2016]字符合并(区间状压DP)

    https://blog.csdn.net/xyz32768/article/details/81591955 首先区间DP和状压DP是比较明显的,设f[L][R][S]为将[L,R]这一段独立操作最 ...

  3. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  4. 【BZOJ】4565: [Haoi2016]字符合并

    4565: [Haoi2016]字符合并 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 690  Solved: 316[Submit][Status ...

  5. 【BZOJ4565】 [Haoi2016]字符合并

    Description 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 k 个字符确定.你需要求出你能获得的最大分数. I ...

  6. [Haoi2016]字符合并 题解

    tijie 时间限制: 2 Sec  内存限制: 256 MB 题目描述 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 ...

  7. 题解 [HAOI2016]字符合并

    题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数. 得到的新字符和分数由这 k 个字符确定.你需要 ...

  8. 【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压

    考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....) 考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种 ...

  9. [HAOI2016]字符合并

    Luogu3736 很容易想到直接DP,关键是枚举顺序. \(1.\)设后一段构成最后一个点,前一段构成前面的点,那么能得到\(1\)个点的数量要求 : \(1,k,2k-1...\)相差\(k-1\ ...

随机推荐

  1. Tomcat 的context.xml说明、Context标签讲解

    Tomcat的context.xml说明.Context标签讲解 1. 在tomcat 5.5之前 --------------------------- Context体现在/conf/server ...

  2. Oracle中 如何用一个表的数据更新另一个表中的数据

    准备阶段 1.建表语句: create table table1( idd varchar2(10) , val varchar2(20) ); create table table2( idd va ...

  3. spring mvc: Hibernate验证器(字段不能为空,在1-150自己)

    spring mvc: Hibernate验证器(字段不能为空,在1-150自己) 准备: 下载Hibernate Validator库 - Hibernate Validator.解压缩hibern ...

  4. IP地址分类、私有地址、子网、子网掩码

    IP地址分类介绍 这里讨论IPv4,IP地址分成了A类.B类.C类.C类.E类,如下图所示: 解释: A类以0开头,网络地址有7位,主机地址有24位,举例:A类地址:0 10000000 000000 ...

  5. iPhone 和Android应用,特殊的链接:打电话,短信,email

    下面的这篇文章主要是说,网页中的链接如何写,可以激活电话的功能. 例如,页面中展示的是一个电话号码,当用户在手机浏览器里面点击这个电话号码的时候,手机会弹出拨号的面板,或者是短信程序会启动等. 1. ...

  6. SSM框架WebSocket配置

    1.StartFilter.java package cn.xydata.pharmacy.websocket; import java.io.IOException; import javax.se ...

  7. logback配置日志输出

    <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> & ...

  8. windows使用pip安装selenium报错问题

    UnicodeDecodeError: 'ascii' codec can't decode byte 0xb9 in position 7: ordinal not in range(128) 这是 ...

  9. 杀死dialog

    先 pkill -9 normal.sh 和  pkill -9 terminal_ui.sh 然后在pkill -9 dialog

  10. jquery下跨域请求之代码示例

    场景描述: 在域A下异步获取B域下的接口: 实现方法: $.ajax({ url : (Q.lottery.serverTimeUrl || 'about:blank'), error : funct ...