【洛谷 P4219】 [BJOI2014]大融合(LCT)
题目链接
维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq
权当背背模板吧。Flash巨佬的blog里面写了虽然我没看懂。
#include <cstdio>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
const int MAXN = 300010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int f[MAXN], c[MAXN][2], v[MAXN], sz[MAXN], st[MAXN], tag[MAXN], ss[MAXN];
inline int nroot(R x){
return c[f[x]][0] == x || c[f[x]][1] == x;
}
I pushup(R x){
sz[x] = sz[lc] + sz[rc] + ss[x] + 1;
}
I pushdown(R x){
if(tag[x]){
R t = lc; lc = rc; rc = t;
tag[lc] ^= 1; tag[rc] ^= 1; tag[x] = 0;
}
}
I rotate(R x){
R y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if(nroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y; c[y][k] = w; f[y] = x; f[x] = z;
if(w) f[w] = y;
pushup(y);
}
I pushall(R x){
if(nroot(x)) pushall(f[x]);
pushdown(x);
}
I splay(R x){
pushall(x);
while(nroot(x)) rotate(x);
pushup(x);
}
I access(R x){
for(R y = 0; x; x = f[y = x]){
splay(x); ss[x] += sz[rc]; ss[x] -= sz[rc = y]; pushup(x);
}
}
I makeroot(R x){
access(x); splay(x);
tag[x] ^= 1;
}
I split(R x, R y){
makeroot(x); access(y); splay(y);
}
I link(R x, R y){
split(x, y);
ss[f[x] = y] += sz[x];
pushup(y);
}
int n, m, a, b;
char opt;
int main(){
n = read(); m = read();
for(R i = 1; i <= n; ++i) sz[i] = 1;
while(m--){
opt = getchar(); while(opt != 'A' && opt != 'Q') opt = getchar();
a = read(); b = read();
switch(opt){
case 'Q' : split(a, b); printf("%lld\n", (long long)(ss[a] + 1) * (ss[b] + 1)); break;
case 'A' : link(a, b); break;
}
}
return 0;
}
【洛谷 P4219】 [BJOI2014]大融合(LCT)的更多相关文章
- 洛谷 P4219 [BJOI2014]大融合 解题报告
P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...
- 洛谷P4219 - [BJOI2014]大融合
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...
- 洛谷P4219 [BJOI2014]大融合(LCT,Splay)
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...
- 洛谷P4219 [BJOI2014]大融合(LCT)
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...
- 洛谷 P4219 [BJOI2014]大融合
查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...
- 洛谷4219 BJOI2014大融合(LCT维护子树信息)
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...
- P4219 [BJOI2014]大融合 LCT维护子树大小
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...
- P4219 [BJOI2014]大融合(LCT)
P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- BZOJ.4530.[BJOI2014]大融合(LCT)
题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...
随机推荐
- PHP中parent关键词
parent关键词 parent表示“父母”的意思,在面向对象语法中,代表“父类” ——本质上就是代表父类这个“类”,而不是父类的“对象”: 其使用方式为: parent::属性或方法: //通常是静 ...
- CentOS 7 开放3306端口访问
CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙.1.关闭firewall:systemctl stop firewalld.servicesystemctl ...
- 第120天:移动端-Bootstrap基本使用方法
一.Bootstrap使用 1.搭建Bootstrap页面骨架及项目目录结构 ``` ├─ /weijinsuo/ ··················· 项目所在目录 └─┬─ /css/ ···· ...
- QT创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束的简单示例
QT创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束的简单示例 部分代码: // 创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束 QMenu *pDialog = mBar->ad ...
- 【JQuery】css操作
一.前言 接着上一章的内容,继续JQuery的学习 二.内容 css 设置或返回匹配元素的样式属性 $(selector).css(css-property-name) $(selec ...
- 【BZOJ4828】【HNOI2017】大佬(动态规划)
[BZOJ4828][HNOI2017]大佬(动态规划) 题面 BZOJ 洛谷 LOJ 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场 就能让周围 ...
- 【noip2018】【luogu5024】保卫王国
题目描述 Z 国有nn座城市,n - 1n−1条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要满足如下几个条 ...
- luoguP5105 不强制在线的动态快速排序
emm 可重集合没用用.直接变成不可重复集合 有若干个区间 每个区间形如[L,R] [L,R]计算的话,就是若干个连续奇数的和.拆位统计1的个数 平衡树维护 加入一个[L,R],把相交的区间合并.之后 ...
- 用dom4j修改xml(增加修改节点)
用dom4j修改xml(增加修改节点) 博客分类: Java XMLJavaMyeclipseServlet 使用dom4j修改解析xml,xml文件的位置是配置在xml.properties文件中 ...
- Hdu1542 Atlantis
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...