题目链接

维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq

权当背背模板吧。Flash巨佬的blog里面写了虽然我没看懂。

#include <cstdio>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
const int MAXN = 300010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int f[MAXN], c[MAXN][2], v[MAXN], sz[MAXN], st[MAXN], tag[MAXN], ss[MAXN];
inline int nroot(R x){
return c[f[x]][0] == x || c[f[x]][1] == x;
}
I pushup(R x){
sz[x] = sz[lc] + sz[rc] + ss[x] + 1;
}
I pushdown(R x){
if(tag[x]){
R t = lc; lc = rc; rc = t;
tag[lc] ^= 1; tag[rc] ^= 1; tag[x] = 0;
}
}
I rotate(R x){
R y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if(nroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y; c[y][k] = w; f[y] = x; f[x] = z;
if(w) f[w] = y;
pushup(y);
}
I pushall(R x){
if(nroot(x)) pushall(f[x]);
pushdown(x);
}
I splay(R x){
pushall(x);
while(nroot(x)) rotate(x);
pushup(x);
}
I access(R x){
for(R y = 0; x; x = f[y = x]){
splay(x); ss[x] += sz[rc]; ss[x] -= sz[rc = y]; pushup(x);
}
}
I makeroot(R x){
access(x); splay(x);
tag[x] ^= 1;
}
I split(R x, R y){
makeroot(x); access(y); splay(y);
}
I link(R x, R y){
split(x, y);
ss[f[x] = y] += sz[x];
pushup(y);
}
int n, m, a, b;
char opt;
int main(){
n = read(); m = read();
for(R i = 1; i <= n; ++i) sz[i] = 1;
while(m--){
opt = getchar(); while(opt != 'A' && opt != 'Q') opt = getchar();
a = read(); b = read();
switch(opt){
case 'Q' : split(a, b); printf("%lld\n", (long long)(ss[a] + 1) * (ss[b] + 1)); break;
case 'A' : link(a, b); break;
}
}
return 0;
}

【洛谷 P4219】 [BJOI2014]大融合(LCT)的更多相关文章

  1. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  2. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

  3. 洛谷P4219 [BJOI2014]大融合(LCT,Splay)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  4. 洛谷P4219 [BJOI2014]大融合(LCT)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  5. 洛谷 P4219 [BJOI2014]大融合

    查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...

  6. 洛谷4219 BJOI2014大融合(LCT维护子树信息)

    QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...

  7. P4219 [BJOI2014]大融合 LCT维护子树大小

    \(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...

  8. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  9. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  10. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

随机推荐

  1. 从理论到实践,全方位认识DNS

    从理论到实践,全方位认识DNS 2015-11-23 程序员之家 作者:selfboot 原文:http://segmentfault.com/a/1190000003956853 对于 DNS(Do ...

  2. 中国省市 Json 二级联动

    Json数据: var cities = {'北京': ['北京'], '广东': ['广州', '深圳', '珠海', '汕头', '韶关', '佛山', '江门', '湛江', '茂名', '肇庆 ...

  3. 【uoj#48】[UR #3]核聚变反应强度 数论

    题目描述 给出一个长度为 $n$ 的数列 $a$ ,求 $a_1$ 分别与 $a_1...a_n$ 的次大公约数.不存在则输出-1. 输入 第一行一个正整数 $n$ . 第二行 $n$ 个用空格隔开的 ...

  4. a++ 和 ++a 的区别

    a++ 和 ++a 的区别 1)首先说左值和右值的定义:        变量和文字常量都有存储区,并且有相关的类型.区别在于变量是可寻址的(addressable)对于每一个变量都有两个值与其相联:  ...

  5. elasticsearch 第一篇(入门篇)

    介绍 elasticsearch是一个高效的.可扩展的全文搜索引擎 基本概念 Near Realtime(NRT): es是一个接近实时查询平台,意味从存储一条数据到可以索引到数据时差很小,通常在1s ...

  6. 常州day7

    Task1 蛤布斯有一个序列,初始为空.它依次将 1-n 插入序列,其中 i 插到当前第 ai 个数的右边 (ai=0 表示插到序列最左边).它希望你帮 它求出最终序列. 对于 100%的数据,n&l ...

  7. CF765F Souvenirs 解题报告

    CF765F Souvenirs 题意翻译 给出\(n(2 \le n \le 10^5 )\) ,一个长为\(n\)的序列\(a(0 \le a_i \le 10^9 )\). 给出\(m(1\le ...

  8. windows内核提权

    Windows by default are vulnerable to several vulnerabilities that could allow an attacker to execute ...

  9. 【原创】【2】rich editor系列教程。了解document.execommand操作,保存丢失的range,实时反馈样式给工具栏

    [原创][2]rich editor系列教程.了解document.execommand操作,保存丢失的range,实时反馈样式给工具栏 索引目录:http://www.cnblogs.com/hen ...

  10. bzoj4010: [HNOI2015]菜肴制作(拓扑排序+贪心+堆)

    这题不是求最小字典序...撕烤了半个小时才发现不对劲T T 这题是能让小的尽量前就尽量前,无论字典序...比如1能在2前面就一定要在2前面... 显然是要先拓扑排序,让小的尽量前转化成让大的尽量往后丢 ...