转载: http://my.oschina.net/sundq/blog/203600

Linux上目前有两种事件通知方式,一种是线程条件变量,一种是利用eventfd实现事件通知,下面介绍一下利用这两种方法实现异步队列的方法。

线程条件变量

相关函数介绍

  • pthread_cond_init:初始化一个线程条件变量。
  • pthread_cond_wait:等待条件触发。
  • pthread_cond_signal:通知一个线程,线程条件发生。
  • pthread_cond_timedwait:等待条件触发,可以设置超时时间。
  • pthread_cond_reltimedwait_np:和pthread_cond_timedwait使用基本相同,区别是使用的是相对时间间隔而不是绝对时间间隔。
  • pthread_cond_broadcast:通知所有等待线程,线程条件发生。
  • pthread_cond_destroy:销毁条件变量。

唤醒丢失问题

如果线程未持有与条件相关联的互斥锁,则调用 pthread_cond_signal() 或 pthread_cond_broadcast() 会产生唤醒丢失错误。满足以下所有条件时,即会出现唤醒丢失问题:

  • 一个线程调用 pthread_cond_signal() 或 pthread_cond_broadcast()
  • 另一个线程已经测试了该条件,但是尚未调用 pthread_cond_wait()
  • 没有正在等待的线程

信号不起作用,因此将会丢失,仅当修改所测试的条件但未持有与之相关联的互斥锁时,才会出现此问题。只要仅在持有关联的互斥锁同时修改所测试的条件,即可调用 pthread_cond_signal() 和 pthread_cond_broadcast(),而无论这些函数是否持有关联的互斥锁。

线程条件变量使用方法

get_resources(int amount)
{
pthread_mutex_lock(&rsrc_lock);
while (resources < amount)
{
pthread_cond_wait(&rsrc_add, &rsrc_lock);
}
resources -= amount;
pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount) 
{

pthread_mutex_lock(&rsrc_lock);
resources += amount;
pthread_cond_broadcast(&rsrc_add);
pthread_mutex_unlock(&rsrc_lock);
}

eventfd

int eventfd(unsigned int initval, int flags);

eventfd 是Linux提供内核态的事件等待/通知机制,内核维护了一个8字节的整型数,该整型数由 initval 来初始化, flags 参数可以由以下值位或而来:

  • EFD_CLOEXEC:设置该描述符的 O_CLOEXEC 标志。
  • EFD_NONBLOCK:设置描述符为非阻塞模式。
  • EFD_SEMAPHORE:设置描述符为信号量工作模式,在此模式下, read 模式会使整型数减1并返回数值1。

当内核维护的8字节整型数为0时, read 操作会阻塞,如果为fd设置为非阻塞模式,则返回 EAGAIN 错误。

简单的唤醒队列

下面我们实现一个简单的环形队列:

#define default_size 1024

typedef struct queue
{
int header;
int tail;
int size;
int capcity;
void **_buf;
} queue_t; queue_t *queue_create(int size)
{
queue_t *q = malloc(sizeof (queue_t));
if (q != NULL)
{
if (size > 0)
{
q->_buf = malloc(size);
q->capcity = size;
}
else
{
q->_buf = malloc(default_size * sizeof (void *));
q->capcity = default_size;
}
q->header = q->tail = q->size = 0;
} return q;
} int queue_is_full(queue_t *q)
{
return q->size == q->capcity;
} int queue_is_empty(queue_t *q)
{
return q->size == 0;
} void queue_push_tail(queue_t *q, void *data)
{
if (!queue_is_full(q))
{
q->_buf[q->tail] = data;
q->tail = (q->tail + 1) % q->capcity;
q->size++;
}
} void *queue_pop_head(queue_t *q)
{
void *data = NULL;
if (!queue_is_empty(q))
{
data = q->_buf[(q->header)];
q->header = (q->header + 1) % q->capcity;
q->size--;
}
return data;
} int *queue_free(queue_t *q)
{
free(q->_buf);
free(q);
}

线程变量实现的异步队列

typedef struct async_queue
{
pthread_mutex_t mutex;
pthread_cond_t cond;
int waiting_threads;
queue_t *_queue;
} async_queue_t;
async_queue_t *async_queue_create(int size)
{
async_queue_t *q = malloc(sizeof (async_queue_t));
q->_queue = queue_create(size);
q->waiting_threads = 0;
pthread_mutex_init(&(q->mutex), NULL);
pthread_cond_init(&(q->cond), NULL); return q;
} void async_queue_push_tail(async_queue_t *q, void *data)
{
if (!queue_is_full(q->_queue))
{
pthread_mutex_lock(&(q->mutex));
queue_push_tail(q->_queue, data);
if (q->waiting_threads > 0)
{
pthread_cond_signal(&(q->cond));
}
pthread_mutex_unlock(&(q->mutex));
} } void *async_queue_pop_head(async_queue_t *q, struct timeval *tv)
{
void *retval = NULL;
pthread_mutex_lock(&(q->mutex));
if (queue_is_empty(q->_queue))
{
q->waiting_threads++;
while (queue_is_empty(q->_queue))
{
pthread_cond_wait(&(q->cond), &(q->mutex));
}
q->waiting_threads--;
}
retval = queue_pop_head(q->_queue);
pthread_mutex_unlock(&(q->mutex));
return retval;
} void async_queue_free(async_queue_t *q)
{
queue_free(q->_queue);
pthread_cond_destroy(&(q->cond));
pthread_mutex_destroy(&(q->mutex));
free(q);
}

eventfd实现的异步队列

typedef struct async_queue
{
int efd; //event fd
fd_set rdfds; //for select
queue_t *_queue;
} async_queue_t;
async_queue_t *async_queue_create(int size)
{
async_queue_t *q = malloc(sizeof (async_queue_t)); q->efd = eventfd(0, EFD_SEMAPHORE|EFD_NONBLOCK);
q->_queue = queue_create(size);
FD_ZERO(&(q->rdfds));
FD_SET(q->efd, &(q->rdfds)); return q;
} void async_queue_push_tail(async_queue_t *q, void *data)
{
unsigned long long i = 1;
if (!queue_is_full(q->_queue))
{
queue_push_tail(q->_queue, data);
write(q->efd, &i, sizeof (i));
}
} void *async_queue_pop_head(async_queue_t *q, struct timeval *tv)
{
unsigned long long i = 0;
void *data = NULL;
if (select(q->efd + 1, &(q->rdfds), NULL, NULL, tv) == 0)
{
return data;
}
else
{
read(q->efd, &i, sizeof (i));
return queue_pop_head(q->_queue);
}
} void async_queue_free(async_queue_t *q)
{
queue_free(q->_queue);
close(q->efd);
free(q);
}

总结

两种实现方法线程条件变量比较复杂,但是性能略高,而eventfd实现简单,但是性能略低。

Linux平台上实现队列的更多相关文章

  1. 如何在linux平台上编译安装zlib软件(公司部分线上机器缺少zlib不能安装supervisor)

    文章在Centos  6.5 linux平台上演示一下如何进行编译安装zlib软件,并配置相关的选项加载使用.示范从下载到安装并配置进行使用过程一系列整套讲解,希望可以给网友考虑使用,谢谢.   工具 ...

  2. Linux平台上轻松安装与配置Domino

    Linux平台上轻松安装与配置Domino Domino Server的编译安装过程中需要用到libstdc++-2.9和glibc-2.1.1(或者其更高的版本)两个编译模块,它们是Linux开发编 ...

  3. 在LINUX平台上手动创建多个实例(oracle11g)

    在LINUX平台上手动创建多个实例(oracle11g) http://blog.csdn.net/sunchenglu7/article/details/39676659 ORACLE linux ...

  4. Jexus是一款Linux平台上的高性能WEB服务器和负载均衡网关

    什么是Jexus Jexus是一款Linux平台上的高性能WEB服务器和负载均衡网关,以支持ASP.NET.ASP.NET CORE.PHP为特色,同时具备反向代理.入侵检测等重要功能.可以这样说,J ...

  5. Linux平台上常用到的c语言开发程序

    Linux操作系统上大部分应用程序都是基于C语言开发的.小编将简单介绍Linux平台上常用的C语言开发程序. 一.C程序的结构1.函数 必须有一个且只能有一个主函数main(),主函数的名为main. ...

  6. [4G]Linux平台上实现4G通信

    转自:http://blog.sina.com.cn/s/blog_7880d3350102wb92.html 在ARM平台上实现4G模块的PPP拨号上网,参考网上的资料和自己的理解,从一无所知到开发 ...

  7. windows平台是上的sublime编辑远程linux平台上的文件

    sublime是个跨平台的强大的代码编辑工具,不多说. 想使用sublime完毕linux平台下django网站的代码编辑工作以提高效率(原来使用linux下的vim效率较低,适合编辑一些小脚本). ...

  8. Domino V8 在 UNIX/Linux 平台上的安装及其常见问题

    在 IBM Bluemix 云平台上开发并部署您的下一个应用. 开始您的试用 Domino V8 的安装需求 Domino V8 可以支持多种平台和操作系统,表1 列出了其支持的各种 UNIX/Lin ...

  9. Linux平台上搭建apache+tomcat负载均衡集群

    传统的Java Web项目是通过tomcat来运行和发布的.但在实际的企业应用环境中,采用单一的tomcat来维持项目的运行是不现实的.tomcat 处理能力低,效率低,承受并发小(1000左右).当 ...

随机推荐

  1. 关于GCC Cygwin MinGW MSYS

    [转载]关于Gcc/MinGW/Cygwin/Msys http://blog.sciencenet.cn/blog-778757-616920.html 一.GCC的历史 GCC是一个原本用于Uni ...

  2. Ubuntu中升极下载4.2内核

    http://tech.hexun.com/2015-09-11/179027013.html 从这段话中所表达出的意思可以了解,Linux Kernel 4.3版本已经开始进行,Linus Torv ...

  3. windows系统上安装与使用Android NDK r8d(一)

    什么是NDK? NDK 提供了一系列的工具,帮助开发者快速开发C(或C++)的动态库,并能自动将so 和 java 应用一起打包成apk.这些工具对开发者的帮助是巨大的. NDK 集成了交叉编译器,并 ...

  4. 虚拟机安装android

    通过 虚拟机VirtualBox安装Android x86 4.0系统. Android x86是一个致力于让android运行在x86架构机器上的民间组织搞的项目,目前在世界上有很多人加入了它,虽然 ...

  5. Linux开发环境必备十大开发工具

    Linux是一个优秀的开发环境,但是如果没有好的开发工具作为武器,这个环境给你带来的好处就会大打折扣.幸运的是,有很多好用的Linux和开源开发工具供你选择,如果你是一个新手,你可能不知道有哪些工具可 ...

  6. javascript比较两个时间大小

    //var yourtime=document.getElementById('begin_time').value; var yourtime='2010-12-10 11:12'; yourtim ...

  7. Android(安卓)开发通过NDK调用JNI,使用opencv做本地c++代码开发配置方法 边缘检测 范例代码

    以前写过两个Android开发配置文档,使用NDK进行JNI开发,这样能够利用以前已经写好的C++代码. 前两篇博客地址: http://blog.csdn.net/watkinsong/articl ...

  8. 深度学习Deep learning

    In the last chapter we learned that deep neural networks are often much harder to train than shallow ...

  9. poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的

    题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用 开始时我列出来三个方程 : a*x+b*y=d; a*x-b*y=d; b*y-ax=d; 傻眼 ...

  10. [置顶] JDK工具(零)--简要介绍JDK1.6自带的42个工具

    Java的开发人员肯定都知道JDK的bin目录中有“java.exe”和“javac.exe”这两个命令行工具, 但并非所有的Java程序员都了解过JDK的bin目录之中其它命令行程序的作用. JDK ...