rocketMQ基本理解
消息中间件需要解决哪些问题?
Publish/Subscribe
发布订阅是消息中间件的最基本功能,也是相对于传统RPC通信而言。
Message Priority
规范中描述的优先级是指在一个消息队列中,每条消息都有不同的优先级,一般用整数来描述,优先级高的消息先投递,如果消息完全在一个内存队列中,那么在投递前可以按照优先级排序,令优先级高的先投递。
由于RocketMQ所有消息都是持久化的,所以如果按照优先级来排序,开销会非常大,因此RocketMQ没有特意支持消息优先级,但是可以通过变通的方式实现类似功能,即单独配置一个优先级高的队列,和一个普通优先级的队列, 将不同优先级发送到不同队列即可。
对于优先级问题,可以归纳为2类:
- 只要达到优先级目的即可,不是严格意义上的优先级,通常将优先级划分为高、中、低,或者再多几个级别。每个优先级可以用不同的topic表示,发消息时,指定不同的topic来表示优先级,这种方式可以解决绝大部分的优先级问题,但是对业务的优先级精确性做了妥协。
- 严格的优先级,优先级用整数表示,例如0 ~ 65535,这种优先级问题一般使用不同topic解决就非常不合适。如果要让MQ解决此问题,会对MQ的性能造成非常大的影响。这里要确保一点,业务上是否确实需要这种严格的优先级,如果将优先级压缩成几个,对业务的影响有多大?
Message Order
消息有序指的是一类消息消费时,能按照发送的顺序来消费。例如:一个订单产生了3条消息,分别是订单创建,订单付款,订单完成。消费时,要按照这个顺序消费才能有意义。但是同时订单之间是可以并行消费的。
RocketMQ可以严格的保证消息有序。
Message Filter
Broker端消息过滤
在Broker中,按照Consumer的要求做过滤,优点是减少了对于Consumer无用消息的网络传输。
缺点是增加了Broker的负担,实现相对复杂。
- 淘宝Notify支持多种过滤方式,包含直接按照消息类型过滤,灵活的语法表达式过滤,几乎可以满足最苛刻的过滤需求。
- 淘宝RocketMQ支持按照简单的Message Tag过滤,也支持按照Message Header、body进行过滤。
- CORBA Notification规范中也支持灵活的语法表达式过滤。
Consumer端消息过滤
这种过滤方式可由应用完全自定义实现,但是缺点是很多无用的消息要传输到Consumer端。
Message Persistence
消息中间件通常采用的几种持久化方式:
- 持久化到数据库,例如Mysql。
- 持久化到KV存储,例如levelDB、伯克利DB等KV存储系统。
- 文件记录形式持久化,例如Kafka,RocketMQ
- 对内存数据做一个持久化镜像,例如beanstalkd,VisiNotify
- (1)、(2)、(3)三种持久化方式都具有将内存队列Buffer进行扩展的能力,(4)只是一个内存的镜像,作用是当Broker挂掉重启后仍然能将之前内存的数据恢复出来。
JMS与CORBA Notification规范没有明确说明如何持久化,但是持久化部分的性能直接决定了整个消息中间件的性能。
RocketMQ充分利用Linux文件系统内存cache来提高性能。
Message Reliablity
影响消息可靠性的几种情况:
- Broker正常关闭
- Broker异常Crash
- OS Crash
- 机器掉电,但是能立即恢复供电情况。
- 机器无法开机(可能是cpu、主板、内存等关键设备损坏)
- 磁盘设备损坏。
(1)、(2)、(3)、(4)四种情况都属于硬件资源可立即恢复情况,RocketMQ在这四种情况下能保证消息不丢,或者丢失少量数据(依赖刷盘方式是同步还是异步)。
(5)、(6)属于单点故障,且无法恢复,一旦发生,在此单点上的消息全部丢失。RocketMQ在这两种情况下,通过异步复制,可保证99%的消息不丢,但是仍然会有极少量的消息可能丢失。通过同步双写技术可以完全避免单点,同步双写势必会影响性能,适合对消息可靠性要求极高的场合,例如与Money相关的应用。
RocketMQ从3.0版本开始支持同步双写。
Low Latency Messaging
在消息不堆积情况下,消息到达Broker后,能立刻到达Consumer。
RocketMQ使用长轮询Pull方式,可保证消息非常实时,消息实时性不低于Push。
At least Once
是指每个消息必须投递一次。
RocketMQ Consumer先pull消息到本地,消费完成后,才向服务器返回ack,如果没有消费一定不会ack消息,所以RocketMQ可以很好的支持此特性。
Exactly Only Once
- 发送消息阶段,不允许发送重复的消息。
- 消费消息阶段,不允许消费重复的消息。
只有以上两个条件都满足情况下,才能认为消息是“Exactly Only Once”,而要实现以上两点,在分布式系统环境下,不可避免要产生巨大的开销。所以RocketMQ为了追求高性能,并不保证此特性,要求在业务上进行去重,也就是说消费消息要做到幂等性。RocketMQ虽然不能严格保证不重复,但是正常情况下很少会出现重复发送、消费情况,只有网络异常,Consumer启停等异常情况下会出现消息重复。
Broker的Buffer满了怎么办?
Broker的Buffer通常指的是Broker中一个队列的内存Buffer大小,这类Buffer通常大小有限,如果Buffer满了以后怎么办?
下面是CORBA Notification规范中处理方式:
- RejectNewEvents 拒绝新来的消息,向Producer返回RejectNewEvents错误码。
- 按照特定策略丢弃已有消息
- AnyOrder - Any event may be discarded on overflow. This is the default setting for this property.
- FifoOrder - The first event received will be the first discarded.
- LifoOrder - The last event received will be the first discarded.
- PriorityOrder - Events should be discarded in priority order, such that lower priority events will be discarded before higher priority events.
- DeadlineOrder - Events should be discarded in the order of shortest expiry deadline first.
RocketMQ没有内存Buffer概念,RocketMQ的队列都是持久化磁盘,数据定期清除。
对于此问题的解决思路,RocketMQ同其他MQ有非常显著的区别,RocketMQ的内存Buffer抽象成一个无限长度的队列,不管有多少数据进来都能装得下,这个无限是有前提的,Broker会定期删除过期的数据,例如Broker只保存3天的消息,那么这个Buffer虽然长度无限,但是3天前的数据会被从队尾删除。
此问题的本质原因是网络调用存在不确定性,即既不成功也不失败的第三种状态,所以才产生了消息重复性问题。
回溯消费
回溯消费是指Consumer已经消费成功的消息,由于业务上需求需要重新消费,要支持此功能,Broker在向Consumer投递成功消息后,消息仍然需要保留。并且重新消费一般是按照时间维度,例如由于Consumer系统故障,恢复后需要重新消费1小时前的数据,那么Broker要提供一种机制,可以按照时间维度来回退消费进度。
RocketMQ支持按照时间回溯消费,时间维度精确到毫秒,可以向前回溯,也可以向后回溯。
消息堆积
消息中间件的主要功能是异步解耦,还有个重要功能是挡住前端的数据洪峰,保证后端系统的稳定性,这就要求消息中间件具有一定的消息堆积能力,消息堆积分以下两种情况:
- 消息堆积在内存Buffer,一旦超过内存Buffer,可以根据一定的丢弃策略来丢弃消息,如CORBA Notification规范中描述。适合能容忍丢弃消息的业务,这种情况消息的堆积能力主要在于内存Buffer大小,而且消息堆积后,性能下降不会太大,因为内存中数据多少对于对外提供的访问能力影响有限。
- 消息堆积到持久化存储系统中,例如DB,KV存储,文件记录形式。 当消息不能在内存Cache命中时,要不可避免的访问磁盘,会产生大量读IO,读IO的吞吐量直接决定了消息堆积后的访问能力。
评估消息堆积能力主要有以下四点:
- 消息能堆积多少条,多少字节?即消息的堆积容量。
- 消息堆积后,发消息的吞吐量大小,是否会受堆积影响?
- 消息堆积后,正常消费的Consumer是否会受影响?
- 消息堆积后,访问堆积在磁盘的消息时,吞吐量有多大?
分布式事务
已知的几个分布式事务规范,如XA,JTA等。其中XA规范被各大数据库厂商广泛支持,如Oracle,Mysql等。其中XA的TM实现佼佼者如Oracle Tuxedo,在金融、电信等领域被广泛应用。
分布式事务涉及到两阶段提交问题,在数据存储方面的方面必然需要KV存储的支持,因为第二阶段的提交回滚需要修改消息状态,一定涉及到根据Key去查找Message的动作。RocketMQ在第二阶段绕过了根据Key去查找Message的问题,采用第一阶段发送Prepared消息时,拿到了消息的Offset,第二阶段通过Offset去访问消息,并修改状态,Offset就是数据的地址。
RocketMQ这种实现事务方式,没有通过KV存储做,而是通过Offset方式,存在一个显著缺陷,即通过Offset更改数据,会令系统的脏页过多,需要特别关注。
定时消息
定时消息是指消息发到Broker后,不能立刻被Consumer消费,要到特定的时间点或者等待特定的时间后才能被消费。
如果要支持任意的时间精度,在Broker层面,必须要做消息排序,如果再涉及到持久化,那么消息排序要不可避免的产生巨大性能开销。
RocketMQ支持定时消息,但是不支持任意时间精度,支持特定的level,例如定时5s,10s,1m等。
消息重试
Consumer消费消息失败后,要提供一种重试机制,令消息再消费一次。Consumer消费消息失败通常可以认为有以下几种情况:
- 由于消息本身的原因,例如反序列化失败,消息数据本身无法处理(例如话费充值,当前消息的手机号被注销,无法充值)等。这种错误通常需要跳过这条消息,再消费其他消息,而这条失败的消息即使立刻重试消费,99%也不成功,所以最好提供一种定时重试机制,即过10s秒后再重试。
- 由于依赖的下游应用服务不可用,例如db连接不可用,外系统网络不可达等。遇到这种错误,即使跳过当前失败的消息,消费其他消息同样也会报错。这种情况建议应用sleep 30s,再消费下一条消息,这样可以减轻Broker重试消息的压力。
RocketMQ Overview
RocketMQ是否解决了上述消息中间件面临的问题,接下来让我们一探究竟。
RocketMQ 是什么?
上图是一个典型的消息中间件收发消息的模型,RocketMQ也是这样的设计,简单说来,RocketMQ具有以下特点:
- 是一个队列模型的消息中间件,具有高性能、高可靠、高实时、分布式特点。
- Producer、Consumer、队列都可以分布式。
- Producer向一些队列轮流发送消息,队列集合称为Topic,Consumer如果做广播消费,则一个consumer实例消费这个Topic对应的所有队列,如果做集群消费,则多个Consumer实例平均消费这个topic对应的队列集合。
- 能够保证严格的消息顺序
- 提供丰富的消息拉取模式
- 高效的订阅者水平扩展能力
- 实时的消息订阅机制
- 亿级消息堆积能力
- 较少的依赖
RocketMQ 物理部署结构
如上图所示, RocketMQ的部署结构有以下特点:
- Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
- Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master,Master与Slave的对应关系通过指定相同的BrokerName,不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slave。Master也可以部署多个。每个Broker与Name Server集群中的所有节点建立长连接,定时注册Topic信息到所有Name Server。
- Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
- Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。
RocketMQ 逻辑部署结构
如上图所示,RocketMQ的逻辑部署结构有Producer和Consumer两个特点。
Producer Group
用来表示一个发送消息应用,一个Producer Group下包含多个Producer实例,可以是多台机器,也可以是一台机器的多个进程,或者一个进程的多个Producer对象。一个Producer Group可以发送多个Topic消息,Producer Group作用如下:
- 标识一类Producer
- 可以通过运维工具查询这个发送消息应用下有多个Producer实例
- 发送分布式事务消息时,如果Producer中途意外宕机,Broker会主动回调Producer Group内的任意一台机器来确认事务状态。
Consumer Group
用来表示一个消费消息应用,一个Consumer Group下包含多个Consumer实例,可以是多台机器,也可以是多个进程,或者是一个进程的多个Consumer对象。一个Consumer Group下的多个Consumer以均摊方式消费消息,如果设置为广播方式,那么这个Consumer Group下的每个实例都消费全量数据。
RocketMQ 数据存储结构
如上图所示,RocketMQ采取了一种数据与索引分离的存储方法。有效降低文件资源、IO资源,内存资源的损耗。即便是阿里这种海量数据,高并发场景也能够有效降低端到端延迟,并具备较强的横向扩展能力。
rocketMQ基本理解的更多相关文章
- RocketMQ入门(简介、特点)
简介: RocketMQ作为一款纯java.分布式.队列模型的开源消息中间件,支持事务消息.顺序消息.批量消息.定时消息.消息回溯等. 发展历程: 1. Metaq(Metamorphosis) 1. ...
- RocketMQ学习笔记(1)----RocketMQ的简介
1. 什么是RocketMQ? 是一个队列模型的消息中间件,具有高性能.高可靠.高实时.分布式特点. Producer.Consumer.队列都可以分布式. Producer 吐一些队列轮流収送消息 ...
- rocketmq学习(一) rocketmq介绍与安装
1.消息队列介绍 消息队列本质上来说是一个符合先进先出原则的单向队列:一方发送消息并存入消息队列尾部(生产者投递消息),一方从消息队列的头部取出消息(消费者消费消息).但对于一个成熟可靠的消息队列来说 ...
- 深入理解RocketMQ的消费者组、队列、Broker,Topic
1.遇到的问题:上测试环境,上次描述的鸟问题又出现了,就是生产者发3条数据,我这边只能收到1条数据. 2.问题解决: (1)去控制台看我的消费者启动情况,貌似没什么问题 , (2)去测试服务器里看日志 ...
- RocketMQ 自己的整理和理解
每个人的想法不同, RocketMQ 介绍的时候就说 是阿里从他们使用的上 解耦出来 近一步简化 便捷的 目的当然是 让其能快速入手和开发 如果不是在项目设计层面上 只是使用的话 从Git上下载该项目 ...
- 必须先理解的RocketMQ入门手册,才能再次深入解读
RocketMQ入门手册 RocketMQ是一个分布式.队列模型的开源消息中间件,前身是MetaQ,是阿里研发的一个队列模型的消息中间件,后开源给apache基金会成为了apache的顶级开源项目,具 ...
- 深入理解RocketMQ(九)---实战(控制台搭建)
rocketMQ控制台搭建 (1)下载rocketmq-console代码:https://github.com/875279177/incubator-rocketmq-externals (2)修 ...
- 深入理解RocketMQ(一)---阅读源码准备
本文主要描述使用Idea获取rocketMQ源码及源码的读取. 在演示搭建源码环境前,先简要描述一下RocketMQ的设计目标. 1.架构模式 和大多数消息中间件一样,采用的是发布订阅模式,基本组件包 ...
- 深入理解RocketMQ(四)--消息存储
一.MQ存储分类 MQ存储主要分为以下三类: 文件系统:RocketMQ/Kafka/RabbitMQ 关系型数据库DB:ActiveMQ(默认采用的KahaDB做消息存储)可选用JDBC的方式来做消 ...
随机推荐
- Hibernate中的映射关系(一对多)
在数据库中表和表之间的关系有几种,(一对一,一对多,多对多)一对一关系:可以选择任意一方插入外键(one-to-one:one-to-one<--->many-to-one[unique= ...
- oracle导入sql文件
oracle导入sql文件: 1.进入到sql文件目录下,登录需要导入文件的用户 打开cmd,输入以下命令,进入oracle, sqlplus username/password username:需 ...
- Ubuntu 12.04安装Google Chrome(转)
下载google chrome deb包,下载地址:https://www.google.com/chrome/browser/desktop/index.html,google的网站被墙了,如果你下 ...
- 7.Git工作区和暂存区
Git和其他版本控制系统如SVN的一个不同之处就是有暂存区的概念. 先来看名词解释. 1.工作区(Working Directory) 就是你在电脑里能看到的目录,比如我的test文件夹就是一个工作区 ...
- git学习------>从SVN迁移到Git之后,项目开发代码继续在SVN提交,如何同步迁移之后继续在SVN提交的代码到Git?
最近逐步逐步的将公司的项目都从SVN往Git迁移了,但是想团队成员都能够一步到位就迁移到Git是不可能的,因为还有大部分人都还不会Git,所以整个过渡过程估计得大半年. 因此导致虽然项目迁移过来了,但 ...
- sql server中的孤立用户
此问题出现在数据库的移值上.移值后,数据库的登陆名和数据库用户名孤立,原数据中,用建立的用户名密码登陆可以访问数据库,但是移值后就不能访问了.而且如果您尝试向该登录帐户授予数据库访问权限,则会因该用户 ...
- 单舵轮(叉车)AGV里程计数据解算
单舵轮(叉车)AGV里程计数据解算 2016-07 单舵轮AGV,一般包含一个驱动轮和两个从动轮,驱动轮是同时具备行走和转向两个功能的舵轮,因此,单舵轮AGV的运动学自由度为2个.舵轮线速度V1,舵轮 ...
- C的指针疑惑:C和指针17(经典抽象数据类型)
堆栈这种数据最鲜明的特点是:后进先出. 用动态数组实现堆栈: #include "C17.h" #include <stdio.h> #include <stdl ...
- PAT 1041 Be Unique[简单]
1041 Be Unique (20 分) Being unique is so important to people on Mars that even their lottery is desi ...
- Apple Pay编程指导
1.About Apple PayApple Pay是一种移动支付技术,让使用者把它们对真实的物品和服务的支付信息以一种方便和安全的方式给你. 对于在app中给出的数字物品和服务,可查看In-App ...