[Luogu-CF1097D]

给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数

求操作 \(k\) 次后 \(n\) 的期望是多少

题解

\(f[i][j]\) 表示以某质数的 \(i\) 次方经过 \(j\) 次操作后的结果

发现答案是积性的 , 质因数分解后转移

\(f[n][k]∗f[m][k]=f[nm][k] (gcd(n,m)=1)\)

对于\(f[i][j]\)的转移 :

\(f[i][j]=\frac{1}{i+1}\sum_{k=0}^{i}f[k][j-1]\)

大胆猜测积性的性质 , 转化为质因数分解后求解

其实肯定要写出最基础的暴力才能发现一些性质 , 所以不管是什么题都要先把暴力打了再说 ; 积性函数这种猜想还是要打表证明一下

记忆化是一个神奇的东西

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#define inf 0x3f3f3f3f
#define int long long
#define p 1000000007
using namespace std; int dp[62][10002]; inline int power(int a,int t);
int inv(int n);
int solve(int a,int i,int j); signed main(){
int n,k,t,ans = 1;
scanf("%lld%lld",&n,&k);
for(int i=2;i*i<=n;++i){
if(n%i!=0) continue; //不是因数,跳过
t = 0;
while(n%i==0){
++t;
n /= i; //找到质因数,算幂次
}
memset(dp,0,sizeof(dp));
ans = (ans*solve(i,t,k))%p;
}
memset(dp,0,sizeof(dp));
if(n>1) ans = (ans*solve(n,1,k))%p; //最后可能剩下n>1,需要多算一遍
printf("%lld",ans);
return 0;
} inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = res*a%p;
a = a*a%p;
t >>= 1;
}
return res;
} int inv(int n){
return power(n,1000000005);
} int solve(int a,int i,int j){
if(i==0){
dp[i][j] = 1; //p^0为1,经过多少次操作还是1
return 1;
}
if(j==0){
//0次操作的情况,即为原数
if(dp[i][j]==0) dp[i][j]=power(a,i);
return dp[i][j];
}
int ans = 0;
for(int k=0;k<=i;++k){
//套用上面的式子
if(dp[k][j-1]==0) dp[k][j-1] = solve(a,k,j-1);
ans = (ans+dp[k][j-1])%p;
}
return ans*inv(i+1)%p;
}

CF1097D Makoto and a Blackboard(期望)的更多相关文章

  1. cf1097D. Makoto and a Blackboard(期望dp)

    题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...

  2. CF1097D Makoto and a Blackboard(期望)

    link 题目大意:给您一个数 n, 每次从n的所有约数(包含1.n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7. 题解:考虑暴力,我们设f(n,k)代表答案,则有f(n, ...

  3. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  4. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  5. CF1097D Makoto and a Blackboard 质因数分解 DP

    Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...

  6. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  8. 【DP】【CF1097D】 Makoto and a Blackboard

    更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...

  9. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

随机推荐

  1. JMeter下载及安装配置完整版

    特别需要注意的时,jdk版本和jmeter版本匹配问题. Jdk1.8对应apache-jmeter-3.3 Jmeter下载及安装配置 本文是在win7环境下安装使用jmeter,jmeter可以运 ...

  2. 【#】Spring3 MVC 注解(二)---@RequestMapping

    博客分类:  spring MVC  1 问题:有多个 @RequestMapping @controller @RequestMapping("/aaa")           ...

  3. 实践作业4---DAY2阶段一。

    由于CSDN博客没有班级博客栏目,所以在该项功能上无法与博客园进行对比,我们将就CSDN和博客园的博文发布功能进行对比.我们就CSDN和博客园的博文发布页面.后台管理界面.发布新博客及界面进行了全面的 ...

  4. Perl语言编程>>学习笔记

    1. 使用反引号可以调用外部程序并返回程序的输出, 如  $cwd = `pwd`; 2. Perl 中的变量类型之间的区别主要是单数和复数; 单数变量称为标量 $scalar , 复数变量称为数组 ...

  5. mysql 用户创建,修改和忘记root密码的操作

    #创建用户CREATE USER 'zzq'@'localhost' IDENTIFIED by 'zzq';#flush privileges 命令本质上的作用是将当前user和privilige表 ...

  6. windows7配置git 免密码登录git服务器

    1.在桌面右击“Git Bash Here ” 2.输入:cd ~/.ssh/ 3.输入你的git服务器的用户 git config --global user.name "xx" ...

  7. CodeForces 681C Heap Operations (模拟题,优先队列)

    题意:给定 n 个按顺序的命令,但是可能有的命令不全,让你补全所有的命令,并且要求让总数最少. 析:没什么好说的,直接用优先队列模拟就行,insert,直接放入就行了,removeMin,就得判断一下 ...

  8. 编写高质量代码改善C#程序的157个建议——建议115:通过HASH来验证文件是否被篡改

    建议115:通过HASH来验证文件是否被篡改 MD5算法作为一种最通用的HASH算法,也被广泛用于文件完整性的验证上.文件通过MD5-HASH算法求值,总能得到一个固定长度的MD5值.虽说MD5是一种 ...

  9. 编写高质量代码改善C#程序的157个建议——建议70:避免在调用栈较低的位置记录异常

    建议70:避免在调用栈较低的位置记录异常 并不是所有的异常都要被记录到日志,一类情况是异常发生的场景需要被记录,还有一类就是未被捕获的异常.未被捕获的异常通常被视为一个Bug,所以,对于它的记录,应该 ...

  10. poj2478——Farey Sequence(欧拉函数)

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18507   Accepted: 7429 D ...